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Figure 1. Our method performs color constancy through diffusion-based color checker inpainting. (top left) Given an input image,
we first inpaint a color checker with Stable Diffusion, aligning the achromatic (gray) squares to accurately reflect the scene illumination
(top middle). The RGB color extracted from the achromatic squares is then used to remove the color cast from the input image (top right).
(Bottom) Our approach leverages the strong priors of pre-trained diffusion models to accurately estimate scene illumination without requiring
physical color checkers during capture, enabling accurate white balance correction across diverse scenes.

Abstract

Color constancy methods often struggle to generalize
across different camera sensors due to varying spectral sen-
sitivities. We present GCC, which leverages diffusion mod-
els to inpaint color checkers into images for illumination
estimation. Our key innovations include (1) a single-step de-
terministic inference approach that inpaints color checkers
reflecting scene illumination, (2) a Laplacian decomposition
technique that preserves checker structure while allowing
illumination-dependent color adaptation, and (3) a mask-
based data augmentation strategy for handling imprecise
color checker annotations. By harnessing rich priors from
pre-trained diffusion models, GCC demonstrates strong ro-
bustness in challenging cross-camera scenarios. These re-
sults highlight our method’s effective generalization capabil-
ity across different camera characteristics without requiring
sensor-specific training, making it a versatile and practical
solution for real-world applications.

1. Introduction

Color constancy is a crucial aspect of computer vision, fo-
cused on determining the illumination of a scene to ensure
that colors are accurately represented under varying lighting
conditions. This process is essential for maintaining a con-
sistent color appearance and for applications ranging from
photography to autonomous driving. Traditional statistics-
based methodologies [8, 14, 24, 25, 40, 47, 58, 66] rely on
various statistical assumptions about scene color distribu-
tions. While these methods are computationally efficient,
they often struggle in challenging scenes when their under-
lying assumptions are violated, especially in environments
with multiple illuminants or complex lighting conditions.

In contrast, deep learning-based methods [12, 39, 53]
have significantly advanced the field of color constancy
through their ability to learn complex illumination patterns
from training data. These approaches typically employ con-
volutional neural networks with various architectures to
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achieve state-of-the-art performance, particularly in chal-
lenging illumination scenarios.

However, a challenge in learning-based color constancy
is that models are often constrained to specific camera sen-
sors due to variations in spectral sensitivities. Recent cross-
camera approaches [1, 2, 11, 51, 71, 76] have made strides
in addressing this limitation through techniques including
metric learning, quasi-unsupervised learning, and device-
independent representations. Building upon these advances,
we explore an approach that leverages foundation models to
enhance cross-camera performance.

Inspired by the recent success of DiffusionLight [56],
which leverages pre-trained diffusion models for lighting
estimation by inpainting a chrome ball, we propose Gen-
erative Color Constancy (GCC), a novel approach that har-
nesses the rich priors of foundation models to overcome the
camera-specific limitations of traditional methods. Unlike
DiffusionLight [56], which focuses on HDR lighting esti-
mation, our method adapts the concept to color constancy
by inpainting a color checker into the input image. Color
checkers are widely used calibration tools in color science,
and our diffusion model generates one with colors that accu-
rately represent the scene’s illumination. By analyzing the
generated color checker’s patches, we can effectively esti-
mate the scene’s illuminant. However, diffusion models typ-
ically generate outputs stochastically, which is undesirable
for color constancy applications requiring consistency. Draw-
ing insights from recent work on deterministic fine-tuning
of image-conditional diffusion models [30], we design a
deterministic pipeline that produces consistent illumination
estimates while preserving the powerful generalization capa-
bilities of the underlying foundation model. Our approach
eliminates the need for camera-specific training data, achiev-
ing robust performance across different camera sensors and
scene types.

In summary, we make the following contributions:
• We propose a novel color constancy method that leverages

diffusion models to inpaint a color checker, which serves
as a virtual reference for illumination estimation.

• We introduce a Laplacian decomposition technique that en-
hances the model to generate color checkers that maintain
structure while adapting to scene illumination, improving
color extraction accuracy.

• We design a deterministic single step inference pipeline
that avoids introducing noise during training and inference,
resulting in consistent results and improved computational
efficiency compared to traditional diffusion processes.

2. Related Work
Color Constancy and White Balance. Color constancy re-
search spans statistical-based and learning-based approaches.
Statistical methods like Gray World [14], Gray Edge [65],
Shades-of-Gray [24], Bright Pixels [40], and Gray Index

[58] make assumptions about scene color statistics but strug-
gle with challenging scenes. Learning-based methods have
proven more effective, evolving from gamut mapping [7, 17]
and regression models [26] to more advanced techniques. No-
table developments include CCC [9] and FFCC [10], which
use convolutional processing and frequency-domain opti-
mization. Deep learning approaches like FC4 [39], DS-Net
[63], RCC-Net [57], and C4 [76] further improve perfor-
mance with various neural network architectures.

A key challenge is camera-specific spectral sensitivity
[1, 29], requiring retraining or calibration for new sensors
[49]. Recent solutions include IGTN’s [71] metric learn-
ing, quasi-unsupervised learning [11], and cross-dataset
approaches [45]. SIIE [1] proposes sensor-independent il-
lumination estimation, while C5 [2] uses unlabeled tar-
get camera images during inference, and CLCC [51] em-
ploys contrastive learning to improve feature representations.
Our work leverages pre-trained diffusion models for color
checker inpainting, utilizing their rich knowledge priors to
offer a novel approach to illumination estimation with en-
hanced generalization capability across different camera sen-
sors.

Image-conditional Diffusion Models. Denoising Diffusion
Probabilistic Models (DDPMs) [64] achieve state-of-the-
art generation by reversing a noising process with UNet
architectures [61], demonstrating excellence in density esti-
mation and sample quality [23, 44]. Latent Diffusion Mod-
els (LDMs) [60] improved efficiency by operating in com-
pressed latent space and introduced cross-attention condition-
ing. This enabled powerful inpainting capabilities, demon-
strated by Blended Diffusion [5, 6], Paint-by-Example [72],
ControlNet [77], and IP-Adapter [74]. Recent work iden-
tified that perceived limitations were often due to DDIM
scheduler implementation issues [50] rather than fundamen-
tal constraints. Our work leverages these insights to effec-
tively adapt diffusion models for color checker inpainting in
illumination estimation.

Learning-based Lighting Estimation. Lighting estimation
methods traditionally use physical probes like mirror balls
[22], 3D objects [52, 69], eyes [55], or faces [15, 75]. Early
probe-free approaches used limited models like directional
lights [41], sky models [36, 37], or spherical harmonics [32].
Modern methods focus on HDR environment maps, pio-
neered by Gardner et al. [31]. DeepLight [48] and EverLight
[21] handle both indoor and outdoor scenes, while Style-
Light [68] uses GANs for joint LDR-HDR prediction. Some
works explore panorama outpainting [4, 20] but struggle
with HDR [21]. Recently, DiffusionLight [56] introduced
virtual chrome ball synthesis using diffusion models. Our
work follows a similar direction but focuses on color checker
inpainting for illumination estimation.

Fine-tuning Strategies for Diffusion Models. For person-
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Figure 2. Overview of our training pipeline. Starting from stable-diffusion-2-inpainting [60], we enable color checker generation through
end-to-end fine-tuning. Given a ground truth color checker image and its mask, we apply color jittering in the masked region. The input
image latent passes through Laplacian decomposition before being concatenated with the masked image latent and the resized mask for the
SD Inpainting U-Net. The model is trained with an L2 loss between the inpainted output and ground truth image at a fixed timestep T .
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Figure 3. Overview of our inference pipeline for illumination estimation. A neutral color checker is pasted onto the input image, which is
then encoded into the latent space. The input latent is processed through Laplacian composition before being concatenated with the masked
image latent and the resized mask. The modified U-Net generates an inpainted result at fixed timestep T . After inverse gamma correction,
we sample the color checker patches to obtain the final RGB illumination value. We highlight the steps and components that are different
from the training pipeline.

alization, DreamBooth [62] pioneered special token fine-
tuning, while Gal et al. [27] and Voynov et al. [67] proposed
learned word embeddings approaches. Similar to Dream-
Booth, our method fine-tunes pre-trained diffusion models
to bind specific visual characteristics to our target domain,
enabling a consistent generation of color checkers that reflect
scene illumination. For efficiency and fine-tuning strategies,
LoRA [38] introduced low-rank weight changes, while SVD-
iff [35] and orthogonal fine-tuning [59] proposed alternative
parameterizations. For geometry estimation, Marigold [42]
demonstrated successful fine-tuning using synthetic data.
Inspired by Garcia et al. [30], who showed that simple fine-
tuning approaches can be highly effective for deterministic
tasks involving low-frequency image components, we adopt
their full fine-tuning strategy for our color checker inpaint-
ing task. This approach aligns well with our color constancy
problem, which primarily focuses on modifying the low-
frequency characteristics of color checkers.

3. Method
Instead of directly predicting environmental RGB light, we
propose to leverage diffusion models’ rich priors to inpaint a
color checker into the scene and extract illumination colors
from it. As shown in Figs. 2 and 3, our pipeline consists
of (1) During training, we fine-tune a diffusion-based in-
painting model at timestep t=T with images containing color
checkers, optimizing for deterministic single-step inference
(Sec. 3.1-3.2). (2) We introduce Laplacian decomposition
to maintain the checker’s high-frequency structure while al-
lowing illumination-aware color adaptation (Sec. 3.3). (3)
At inference time, we composite a neutral color checker into
a given scene and use our fine-tuned model to inpaint it ac-
cording to the scene illumination, from which we extract the
scene’s light color information (Sec. 3.4).

3.1. Network Architecture
We base our model on stable-diffusion-2-inpainting [60] for
its specialized local editing capability. The model consists of
a VAE encoder-decoder pair (E , D) and a U-Net denoising
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Figure 4. Analysis of color checker alignment strategies. (a)
Direct inpainting on masked regions leads to poor color checker
structure. This is because we do not provide guidance on the desired
color checker structure, causing the model to generate contours that
do not meet our expectations. (b) Using a homography transform
to overlay a template suffers from pixel-level misalignment due to
imprecise bounding box annotations. (c) Our mask color jittering
approach overcomes corner annotation limitations by allowing the
model to generate geometrically consistent color checker structures
while accurately reflecting scene illumination.

backbone. Given an RGB image I ∈ RH×W×3 and a binary
mask M ∈ {0, 1}H×W indicating the color checker region,
we first encode both the masked image and the original image
into the latent space as zmasked = E(I ⊙ (1−M)) and z =
E(I), where ⊙ denotes element-wise multiplication. The
mask M is downscaled by a factor of 8 to match the latent
resolution as M ′ ∈ Rh×w, where h = H/8, w = W/8.
During training, the U-Net denoiser ϵθ takes as input the
concatenation of the noised latent zt, the downscaled mask
M ′, and the masked image latent zmasked along the channel
dimension as zcombined = [zt,M

′, zmasked] ∈ Rh×w×(2d+1),
where d is the latent dimension. Together with the timestep
t and text embedding c, the denoiser is trained to predict the
noise as ϵθ(zcombined, t, c) → Rh×w×d. At inference time,
we obtain the final inpainted result by decoding the denoised
latent Î = D(z0), where only the color checker region is
modified while leaving the rest unmodified, making this
architecture particularly suitable for the color constancy task.

3.2. End-to-End Fine-Tuning

Training. Although pre-trained diffusion models like SD
and SD inpainting [60] have been exposed to diverse image

collections, additional fine-tuning is crucial for generating
precise color checkers that accurately reflect environmental
illumination. As shown in experiments Fig. 7, fine-tuning
significantly impacts the model’s ability to generate color
checkers that faithfully represent scene illumination.

Although SDEdit [54] could be applied to our task, it
faces a fundamental trade-off in noise level selection. On
one hand, insufficient noise fails to effectively suppress the
original chromatic information from the input image, mak-
ing it difficult to adapt to the target scene illumination. On
the other hand, excessive noise, while better at removing
unwanted color information, can disrupt the structural con-
sistency between the generated result and the input reference.
Furthermore, for color constancy tasks, maintaining a one-
to-one correspondence between input and output is essential.
While traditional diffusion models’ stochastic nature allows
for ensemble improvements through multiple inferences, this
comes at an increased computational cost.

Following [30], we adopt an end-to-end fine-tuning ap-
proach that enables single-step deterministic inference while
maintaining high-quality color checker generation. Specifi-
cally, we fine-tune the inpainting U-Net at a fixed timestep
t = T as shown in Fig. 2. Given an input image I and its
corresponding mask M, we first obtain the augmented im-
age Iaug by applying color jittering to the masked region.
We then obtain its latent representation through the VAE en-
coder, z∗ = E(Iaug). The latent representation is processed
through Laplacian decomposition to extract high-frequency
components, zh = H(z∗). For single-step prediction, we
directly set the noise term ϵ = 0 in the forward process:
zT =

√
ᾱT zh +

√
1− ᾱT ϵ. The denoised latent is then ob-

tained through ẑ0 =
√
ᾱT zT −

√
1− ᾱT ϵθ(zcombined, T, c),

where zcombined = [zT ,M
′, zmasked] ∈ Rh×w×(2d+1) rep-

resents the concatenated input features along the channel
dimension, and c denotes the text condition. Finally, we de-
code the latent to obtain the inpainted image: Î = D(ẑ0).
The model is optimized using a mean squared error loss:

L =
1

HW

∑
i,j

(I∗i,j − Îi,j)
2, (1)

where (i, j) denotes the pixel coordinates, and H and W are
the height and width of the image, respectively.
Color checker misalignment issue. Existing color con-
stancy datasets [18, 33] only provide rough bounding boxes
for color checkers instead of precise corner point locations.
This hinders our ability to accurately align the standard
sRGB color checker with the one in the original image,
affecting the model’s learning of the transformation from
standard to harmonized colors. To overcome this limitation,
we designed a mask region-based data augmentation method.

We first analyze two intuitive solutions: directly masking
and allowing the model to perform inpainting. This approach
results in generated color checkers with contours that do
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not meet our expectations, making accurate color extraction
from the patches difficult (Fig. 4 (a)). The second solution
involved overlaying the color checker template directly onto
the original image (Fig. 4 (b)). However, due to the absence
of precise corner point locations, alignment with the raw
checker remains imperfect at a per-pixel level even when
using homography transform.

Masked color jittering. Therefore, we further explored a
third approach: directly applying strong color jittering to the
mask region (Fig. 4 (c)). This seemingly counterintuitive
method aims to destroy clues that may leak sensor-specific
information, forcing the model to rely on information outside
the mask region to reconstruct the original color checker that
aligns with the ground truth.

Random color jittering on masked checkers helps our
model learn robust mappings between neutral color ref-
erences and scene-specific lighting appearances. The aug-
mented image Iaug is obtained by:

Iaug = (1−M)⊙ I +M ⊙ T (I), (2)

where I is the input image, M is the binary mask, ⊙ de-
notes element-wise multiplication, and T (·) represents the
color jittering function that randomly applies brightness, con-
trast, and saturation adjustments to the masked region. By
randomly perturbing the color checker region, we force the
model to rely on contextual illumination cues rather than
local color checker patterns. This approach overcomes the
limitations of imprecise annotations in existing datasets and
enhances the model’s ability to learn accurate illumination
estimation from scene context.

3.3. Laplacian Decomposition

Although mask color jittering addresses the imprecise cor-
ner annotation issue, the randomness in jittering may oc-
casionally allow low-frequency information leakage from
the masked region. This could cause the model to simply
reconstruct the masked area rather than harmonize it with
the scene illumination. To address this issue, we introduce
the Laplacian decomposition technique.

By extracting only the high-frequency components of the
input image through Laplacian decomposition, our approach
serves two purposes: First, it preserves the structural details
needed to generate a color checker that faithfully maintains
the patch layout of our pre-pasted reference. Second, it min-
imizes the influence of low-frequency color information,
encouraging the model to focus on harmonizing the gener-
ated color checker with the scene illumination rather than
reconstructing the original colors. The key benefit of Lapla-
cian decomposition, as shown in Fig. 7, allows the model
to generate color checkers that maintain structural consis-
tency while correctly reflecting scene illumination, enabling
accurate illumination estimation.

3.4. Inference
The complete inference pipeline of our method is illustrated
in Fig. 3, which consists of the following steps:

Color checker generation. We first composite a fixed-size
neutral color checker centered at the mask region. The input
image is then gamma-corrected with γ = 2.2 to transform
it to the sRGB domain. This preprocessed image is pro-
cessed through our model in a single forward pass with fixed
timestep t = T . The output is then inverse gamma-corrected
to obtain the raw domain result.

Illumination estimation. Since we have precise control
over initial checker placement and Laplacian decomposition
ensures structural preservation, we can reliably extract color
information from each patch. Specifically, we directly map
the generated checker to a standardized grid, followed by
applying fixed masks to sample colors from each patch. The
scene illumination is then estimated from the achromatic
patches of the color checker.

4. Experiments
4.1. Experimental Setup
Dataset. We use two publicly available color constancy
benchmark datasets in our experiments: the NUS-8
dataset [19] and the re-processed Color Checker dataset [33]
(referred to as the Gehler dataset). The Gehler dataset [33]
contains 568 original images captured by two different cam-
eras, while the NUS-8 dataset [19] contains 1736 original
images captured by eight different cameras. Each image in
both datasets includes a Macbeth Color Checker chart, which
serves as a reference for the ground-truth illuminant color.
Evaluation metrics. To evaluate the performance of color
constancy methods, we use the standard angular error metric,
which measures the angular difference between the estimated
illuminant and the ground-truth illuminant. Specifically, the
angular error θ between an estimated illuminant vector ŷ
and the ground-truth illuminant vector y is defined as:

θ = arccos

(
ŷ · y
|ŷ||y|

)
(3)

The angular error is measured in degrees, with smaller val-
ues indicating better estimation accuracy. Following previous
works, we report the following statistics of the angular error.

4.2. Implementation Details
Our implementation is based on the stable-diffusion-2-
inpainting model [60] using PyTorch. All input images are
resized to 512×512 resolution for both training and infer-
ence. Since the pre-trained VAE was trained on sRGB im-
ages, we apply a gamma correction of γ = 1/2.2 on linear
RGB images before encoding to minimize the domain gap.
Conversely, after VAE decoding, we apply inverse gamma
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Table 1. Camera-agnostic evaluation. All results are in units of degrees.

Training set → Testing set NUS-8 dataset [19] → Gehler dataset [33] Gehler dataset [33] → NUS-8 dataset [19]

Method Mean Median Tri-mean Best 25% Worst 25% Mean Median Tri-mean Best 25% Worst 25%

Statistical Methods
White-Path [13] 7.55 5.68 6.35 1.45 16.12 9.91 7.44 8.78 1.44 21.27
Gray-World [14] 6.36 6.28 6.28 2.33 10.58 4.59 3.46 3.81 1.16 9.85
1st-order Gray-Edge [66] 5.33 4.52 4.73 1.86 10.43 3.35 2.58 2.76 0.79 7.18
2nd-order Gray-Edge [66] 5.13 4.44 4.62 2.11 9.26 3.36 2.70 2.80 0.89 7.14
Shades-of-Gray [24] 4.93 4.01 4.23 1.14 10.20 3.67 2.94 3.03 0.99 7.75
General Gray-World [8] 4.66 3.48 3.81 1.00 10.09 3.20 2.56 2.68 0.85 6.68
Grey Pixel (edge) [73] 4.60 3.10 - - - 3.15 2.20 - - -
Cheng et al. [19] 3.52 2.14 2.47 0.50 8.74 2.92 2.04 2.24 0.62 6.61
LSRS [28] 3.31 2.80 2.87 1.14 6.39 3.45 2.51 2.70 0.98 7.32
GI [58] 3.07 1.87 2.16 0.43 7.62 2.91 1.97 2.13 0.56 6.67

Learning-based Methods
Bayesian [34] 4.75 3.11 3.50 1.04 11.28 3.65 3.08 3.16 1.03 7.33
Chakrabarti [16] 3.52 2.71 2.80 0.86 7.72 3.89 3.10 3.26 1.17 7.95
FFCC [10] 3.91 3.15 3.34 1.22 7.94 3.19 2.33 2.52 0.84 7.01
SqueezeNet-FC4 [39] 3.02 2.36 2.50 0.81 6.36 2.40 2.03 2.10 0.70 4.80
C4

SqueezeNet-FC4 [76] 2.73 2.20 2.28 0.72 5.69 2.28 1.90 1.97 0.67 4.60
SIIE [1] 3.72 2.46 2.79 1.02 8.51 4.24 3.88 3.93 1.45 7.66
CLCC [51] 3.05 2.44 2.51 0.89 6.30 3.42 2.95 3.06 0.94 6.70
C5 [2] 3.34 2.57 2.68 0.78 7.39 2.65 1.98 2.14 0.66 5.72
Ours 2.35 2.02 2.06 0.78 4.57 2.38 2.01 2.10 0.80 4.58

correction to convert the output back to the linear domain
for metric evaluation.

Following parameter settings from [30], we train our mod-
els using the Adam optimizer with an initial learning rate of
5×10−5 and apply an exponential learning rate decay after a
150-step warm-up period. For cross-dataset evaluation, when
training on the Gehler dataset and testing on NUS-8, we use
a batch size of 8 with no gradient accumulation for 20k iter-
ations. When training on NUS-8 and testing on the Gehler
dataset, we use a batch size of 8 with gradient accumulation
over 2 steps (effective batch size of 16) for 20k iterations.

For data augmentation, we follow FC4 [39] to rescale
images by random RGB values in [0.6, 1.4] in the raw do-
main, noting that we only rescale input images since our
training does not require ground truth illumination. We
also apply mask color jittering to handle imprecise color
checker annotations. For Laplacian decomposition, we use
a two-level pyramid (L = 2) to balance the preservation
of high-frequency structural details and the suppression of
low-frequency color information. All experiments were con-
ducted on an NVIDIA RTX 4090 GPU. Additional imple-
mentation details are provided in the supplementary material.

4.3. Results and Comparisons
Evaluation protocols. We conduct experiments under three
different protocols to comprehensively assess our method’s
performance and generalization capabilities. First, following
the camera-agnostic evaluation protocol from C4 [76], we
evaluate robustness against camera sensitivity variations by
training on one dataset and testing on another. Specifically,
we train on the NUS-8 dataset and test on the Gehler dataset
and vice versa. As shown in Table 1, our method achieves

Table 2. Leave-one-out evaluation on the NUS-8 Dataset [19].
NUS-8 Dataset [19] Mean Med. Tri. Best 25% Worst 25%

Gray-world [14] 4.59 3.46 3.81 1.16 9.85
Shades-of-Gray [24] 3.67 2.94 3.03 0.98 7.75
Local Surface Reflectance [28] 3.45 2.51 2.70 0.98 7.32
PCA-based B/W Colors [18] 2.93 2.33 2.42 0.78 6.13
Grayness Index [58] 2.91 1.97 2.13 0.56 6.67
Cross-dataset CC [46] 3.08 2.24 - - -
Quasi-Unsupervised CC [11] 3.00 2.25 - - -
SIIE[1] 2.05 1.50 - 0.52 4.48
FFCC [10] 2.87 2.14 2.30 0.71 6.23
C5 [2] 2.54 1.90 2.02 0.61 5.61
Ours 2.03 1.78 1.83 0.77 3.69

Table 3. Leave-one-out evaluation on the Gehler Dataset [33].
Gehler dataset [33] Mean Med. Tri. Best 25% Worst 25%

Shades-of-Gray [24] 4.93 4.01 4.23 1.14 10.20
PCA-based B/W Colors [18] 3.52 2.14 2.47 0.50 8.74
ASM [3] 3.80 2.40 2.70 - -
Woo et al. [70] 4.30 2.86 3.31 0.71 10.14
Grayness Index [58] 3.07 1.87 2.16 0.43 7.62
Cross-dataset CC [46] 2.87 2.21 - - -
Quasi-Unsupervised CC [11] 3.46 2.23 - - -
SIIE [1] 2.77 1.93 - 0.55 6.53
FFCC [10] 2.95 2.19 2.35 0.57 6.75
C5 [2] 2.50 1.99 2.03 0.47 5.46
Ours 2.80 2.50 2.58 1.10 5.00

competitive performance compared to state-of-the-art ap-
proaches. Second, we adopt the leave-one-out protocol from
SIIE [1] to assess performance on unseen camera sensors
by excluding images from one camera during training and
testing on them. This process is repeated for all cameras,
with results in Tab. 2 and Tab. 3 demonstrating our method’s
effectiveness. Both protocols highlight that our approach
leverages diffusion priors to learn sensor-independent illu-
mination features without requiring camera-specific retrain-
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Figure 5. Sensitivity to color checker placement. This figure demonstrates the robustness of our method across various color checker
positions under a single light source scenario. The left part displays different placements of color checkers and their corresponding processed
results, showing that our method remains effective under challenging warm color temperatures (regions with lower data distribution). The
scatter plots on the right quantitatively validate this observation, where the estimated illumination values consistently cluster near the ground
truth target, confirming the precision and consistency of our approach.

ing. Additionally, we conducted standard three-fold cross-
validation on both the NUS-8 [19] and Gehler datasets [33]
. As shown in Tab. 4 and Tab. 5, our method achieves per-
formance comparable to other approaches, particularly in
worst-case scenarios.

Position-aware Sampling and Consistency. Fig. 5 demon-
strates our method’s robustness in single-illumination scenes.
Unlike prior approaches, our ability to sample at different
positions and generate result ensembles enables the quan-
tification of model consistency, showcasing our approach’s
precision and reliability.

Spatially Varying Illumination in Multi-source Scenes.
Traditional color constancy methods typically assume a sin-
gle global illuminant, limiting their applicability in complex
lighting scenarios. Our method naturally extends to spatially
varying illumination conditions. We evaluated this capabil-
ity on the LSMI dataset [43], which features challenging
multi-illuminant scenes. By dividing each image into a 4×4
grid, inpainting color checkers in each cell, and interpolating
these local estimates, our method effectively models differ-
ent lighting regions. Results in Tab. 6 demonstrate that our
approach can handle complex lighting environments with-
out requiring specific fine-tuning for multi-illuminant data.
Fig. 6 visually confirms our method’s ability to adapt to
lighting transitions in real-world environments.

Computational Efficiency. Our method maintains efficient
inference times due to its single-step design. Using an
NVIDIA RTX 4090 GPU, it processes a 512×512 image in
180ms, significantly faster than traditional diffusion methods
requiring multiple denoising steps as shown in Tab. 7, while
preserving accuracy benefits from diffusion priors.

Table 4. Three-fold cross-validation on NUS-8 dataset [19].
NUS-8 dataset [19] Mean Med. Tri. Best 25% Worst 25%

CCC [9] 2.38 1.48 1.69 0.45 5.85
AlexNet-FC4 [39] 2.12 1.53 1.67 0.48 4.78
FFCC [10] 1.99 1.31 1.43 0.35 4.75
C4

SqueezeNet-FC4 [76] 1.96 1.42 1.53 0.48 4.40
CLCC [51] 1.84 1.31 1.42 0.41 4.20
Ours 2.10 1.52 1.69 0.56 4.38

Table 5. Three-fold cross-validation on Gehler dataset [33].
Gehler dataset [33] Mean Med. Tri. Best 25% Worst 25%

CCC [9] 1.95 1.22 1.38 0.35 4.76
SqueezeNet-FC4 [39] 1.65 1.18 1.27 0.38 3.78
FFCC [10] 1.61 0.86 1.02 0.23 4.27
C4

SqueezeNet-FC4 [76] 1.35 0.88 0.99 0.28 3.21
CLCC[51] 1.44 0.92 1.04 0.27 3.48
Ours 1.91 1.80 1.84 0.60 3.46

Table 6. Zero-shot evaluation on the LSMI Dataset [43]. Mean
angular error (MAE) for the spatially varying illumination map.

Galaxy Nikon

Method Single Multi Mixed Single Multi Mixed

LSMI-H [43] 2.85 3.13 3.06 2.76 3.2 2.99
LSMI-U [43] 2.95 2.35 2.63 1.51 2.36 1.95
Ours 2.05 3.44 2.82 2.10 3.58 2.88

4.4. Ablation Studies
We conducted a series of ablation experiments to validate the
importance of key design choices, including using Laplacian
decomposition, noise prediction-based LoRA fine-tuning,
and mask-based data augmentation in Tab. 8.

Without Laplacian decomposition. Without Laplacian de-
composition, we use only the VAE encoder’s latent represen-
tation as input. As shown in Fig. 7, the generated checker
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Table 7. Comparison between fine-tuned SDXL inpainting and our one-step model. All metrics are reported in degrees, and inference
time is measured on a single 512×512 image using an NVIDIA RTX 4090 GPU. All models are trained on the NUS-8 dataset [19] and
evaluated on the Gehler dataset [33].

Method Steps Ensemble Inference time (s) Mean Median Best-25% Worst-25%

SDXL Inpainting (SDEdit) 25 10 17.98 4.47 3.25 1.07 10.01
Full Model 1 1 0.18 2.35 2.02 0.78 4.57

Input Illuminant map Ours GT
Figure 6. Spatially varying illumination in multi-source scenes.
From left to right: input image with mixed illumination, illuminant
coefficient map showing per-pixel light distribution, our white
balanced result, and ground truth white balanced image.

Table 8. Ablation study on key components of our method.
We evaluate the impact of components: Laplacian decomposition
(Lap.), color checker inpainting vs. RGB prediction, and masked
color jittering (Mask DA). All models are trained on the NUS-8
dataset [19] and evaluated on the Gehler dataset [33]. The results
show that our color checker inpainting approach outperforms di-
rect RGB prediction, and the combination with other components
(Laplacian decomposition and masked color jittering) yields the
best performance. All error metrics are reported in degrees, with
lower values indicating better performance.

Noise Lap. Inpaint Mask DA Mean Median Best-25% Worst-25%

Zeros - ✓ ✓ 3.71 2.86 1.31 7.68
Zeros ✓ ✓ - 3.52 2.76 1.25 6.78
Zeros - - - 2.98 2.53 1.26 6.14
Zeros ✓ ✓ ✓ 2.35 2.02 0.78 4.57

is contaminated by low-frequency information from the ini-
tial neutral reference, producing disharmonious colors that
prevent accurate environmental color estimation.

With noise. In this experiment, we used LoRA [38] to fine-
tune the SDXL inpainting model [60] and obtained the final
output through ensemble averaging across multiple samples.
As shown in Tab. 7, this approach underperforms our final
method due to the fundamental trade-off between preserving
the color checker’s geometry and suppressing low-frequency
information from the neutral reference checker.

(a) w/o fine tune (b) w/o Laplacian (c) Full GT

Figure 7. Effect of fine-tuning and Laplacian decomposition. (a)
Results without fine-tuning show poor color checker quality due to
the domain gap between the pre-trained diffusion model’s training
data (sRGB images) and our gamma-corrected raw images, leading
to disharmonious inpainting results. (b) Results without Laplacian
decomposition are biased by low-frequency information from the
neutral color checker, leading to inharmonious generation. (c) Our
full method with both components produces well-harmonized color
checkers that accurately reflect scene illumination.

Without mask data augmentation. Initially, we aligned
color checkers using homography based on dataset corner
locations, but imprecisions led to alignment errors at the
pixel level. Our mask-based data augmentation approach
eliminates reliance on specific corner positions, producing
more accurate scene-harmonized color checkers that better
represent the overall scene lighting.
Without inpainting color checker. In this experiment, we
directly used the diffusion model to predict scene illumina-
tion RGB, not by inpainting a checker. This direct approach
proves less effective than our inpainting method, highlight-
ing the importance of color checker references for accurate
illumination estimation.

5. Conclusion
In this work, we introduce a color constancy method that
leverages image-conditional diffusion models to inpaint
color checkers directly into images. Our approach harnesses
the rich priors of foundation models to overcome general-
ization challenges across varying camera sensors. By em-
ploying Laplacian decomposition, our method maintains the
checker’s high-frequency structure while adapting to scene il-
lumination, enabling accurate light color estimation without
camera-specific training. Experiments demonstrate robust
performance in cross-camera scenarios, particularly for chal-
lenging cases, making our approach a versatile solution for
real-world color constancy applications.
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Overview
This supplementary material presents additional details and
results to complement the main manuscript. In Section A,
we provide comprehensive implementation details, including
dataset preprocessing protocols and training configurations.
Section B presents an empirical analysis of the impact of
different pyramid levels in our Laplacian decomposition
technique and provides implementation details of the algo-
rithm. Section C showcases qualitative results demonstrating
our method’s effectiveness across various datasets and real-
world scenarios. We will release our complete training and
inference code along with pre-trained weights to facilitate
future research in this area.

A. Implementation Details

A.1. Datasets and Preprocessing
We use two publicly available color constancy benchmark
datasets in our experiments: the NUS-8 dataset [19] and the
Gehler dataset [33]. The Gehler dataset [33] contains 568
original images captured by two different cameras, while the
NUS-8 dataset [19] contains 1736 original images captured
by eight different cameras. Each image in both datasets in-
cludes a Macbeth Color Checker (MCC) chart, which serves
as a reference for the ground-truth illuminant color.

Following the evaluation protocol in [1], several standard
metrics are reported in terms of angular error in degrees:
mean, median, tri-mean of all the errors, the mean of the
lowest 25% of errors, and the mean of the highest 25% of
errors.

A.2. Training Details
For all experiments, we process the raw image data be-
fore applying gamma correction for sRGB space conversion
following the preprocessing protocol from [39]. Since the
pre-trained VAE was trained on sRGB images, we apply
a gamma correction of γ = 1/2.2 on linear RGB images
before encoding to minimize the domain gap. Conversely,
after VAE decoding, we apply inverse gamma correction
to convert the output back to the linear domain for metric
evaluation.

All experiments are trained for 20000 iterations on an
NVIDIA A6000 GPU using the Adam optimizer with an
initial learning rate of 5× 10−5 and apply exponential learn-
ing rate decay after a 150-step warm-up period. For data
augmentation, we follow FC4 [39] to rescale images by ran-
dom RGB values in [0.6, 1.4], noting that we only rescale
the input images since our training does not require ground
truth illumination. The rescaling is performed in the raw do-
main, followed by gamma correction. This is implemented
through a 3×3 color transformation matrix, where diagonal

elements control the intensity of individual RGB channels
(color strength), and off-diagonal elements determine the
degree of color mixing between channels (color offdiag).
For Laplacian decomposition, we use a two-level pyramid
(L = 2) to balance the preservation of high-frequency struc-
tural details and the suppression of low-frequency color
information. Additionally, we apply local transformations
to masked regions only, including brightness adjustment
([0.8, 2.0]), saturation adjustment ([0.8, 1.4]), and contrast
adjustment ([0.8, 1.4]).

Three-fold Cross-validation For cross-validation exper-
iments on both the NUS-8 dataset [19] and the Gehler
dataset [33], we use a batch size of 8. During training, we
apply random crop with a probability of pcrop = 0.7, where
the crop size ranges from 70% to 100% of the original di-
mensions. Color augmentation is applied with a probability
of pcolor = 0.3.

Leave-one-out Evaluation For the leave-one-out exper-
iments on the NUS-8 dataset [19], we use a batch size of
8 with gradient accumulation over 2 steps (effective batch
size of 16). We apply random crop with a probability of
pcrop = 0.75, where the crop size ranges from 70% to 100%
of the original image dimensions, and color augmentation
with a probability of pcolor = 0.65.

For the Gehler dataset [33], when training on Canon5D
and evaluating on Canon1D, we use a batch size of 8, apply
random crop with a probability of pcrop = 0.75 (crop size
from 70% to 100%), and color augmentation with a probabil-
ity of pcolor = 0.85. Similarly, when training on Canon1D
and evaluating on Canon5D, we maintain the same batch
size of 8, with random crop probability of pcrop = 0.7 and
crop size ranging from 50% to 100%, while keeping the
color augmentation probability at pcolor = 0.85.

Cross-dataset Evaluation When training on NUS-8 [19]
and testing on the Gehler dataset[33], we use a batch size of
8 with gradient accumulation over 2 steps (effective batch
size of 16). We apply random crop with a probability of
pcrop = 0.75, where the crop size ranges from 70% to 100%
of the original dimensions, and color augmentation with a
probability of pcolor = 0.6. Conversely, when training on
the Gehler dataset [33] and testing on NUS-8 [19], we use
a batch size of 8 without gradient accumulation. We apply
random crop with the same probability of pcrop = 0.75 and
size range of 70% to 100%, while color augmentation is
applied with a probability of pcolor = 1.0.

SDXL Inpainting (SDEdit) For the SDXL inpainting
model [60] with LoRA fine-tuning experiments, we use a
learning rate of 5 × 10−5 and a LoRA rank of 4. In the
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Figure 8. Flow diagram of Laplacian decomposition. Frequency
component fusion through two-level (1/2 resolution) blur, down-
sample, and composition operations.

cross-dataset experiment from the NUS-8 dataset [19] to the
Gehler dataset [33], we train for 20,000 iterations with batch
size 4.

A.3. Inference Settings
Full Model Following Garcia et al. [30], we employ
DDIM scheduler with a fixed timestep t = T and trailing
strategy during inference for deterministic single-step gener-
ation. Our implementation is based on the stable-diffusion-
2-inpainting model [60].

SDXL Inpainting (SDEdit) For comparison, we also im-
plement a version using SDXL inpainting model [60] with
LoRA [38] fine-tuning. During inference, we use the DDIM
scheduler with 25 denoising steps and SDEdit with a noise
strength of 0.6, a guidance scale of 7.5, and a LoRA scale of
1. The final illumination estimation is obtained by computing
the median from an ensemble of 10 generated samples.

B. Laplacian Decomposition

B.1. Laplacian Decomposition Visualization
Figure 8 visualizes the algorithm flow of our Laplacian de-
composition technique. Algorithm 1 outlines the detailed
steps of this process, which preserves high-frequency struc-
tural details while allowing illumination-dependent color
adaptation, enabling accurate scene illumination estimation.

B.2. Analysis of Pyramid Level Selection
We conduct experiments with different numbers of pyramid
levels (L = 1,2,3) to analyze the effectiveness of our Lapla-
cian decomposition. As shown in Tab. 9, using two-level
decomposition (L = 2) achieves the best performance across
all metrics. Adding more levels not only increases computa-
tional complexity but also leads to performance degradation,

Algorithm 1: High-frequency Extraction via Lapla-
cian Pyramid

Input: Input latent z ∈ RB×C×H×W , pyramid levels L
Output: High-frequency components zh
Initialize zh = 0
k ← 3×3 Gaussian kernel
for each channel c in C do

zcurr ← z[c] // Current level features
for l = 0 to L− 1 do

zblur ← k ∗ zcurr // Gaussian blur
zhigh ← zcurr − zblur // High-freq details
if l = 0 then

zh[c]← zhigh
else

zh[c]← zh[c] + Upsample(zhigh)
end
zcurr ← AvgPool(zblur) // Downsample

end
end
return zh

as the additional levels introduce more low-frequency infor-
mation that can adversely affect the harmonious generation
of color checkers.

C. Additional Qualitative Results

C.1. Benchmark Datasets
On the NUS-8 dataset [19] and Gehler dataset [33], we uti-
lize the original mask locations to place fixed-size neutral
color checkers in our experiments. The results Fig. 10 and
Fig. 11 demonstrate our method’s ability to generate struc-
turally coherent color checkers that naturally blend with the
scene while accurately reflecting local illumination condi-
tions, enabling effective color cast removal across diverse
lighting scenarios.

C.2. In-the-wild Images
For in-the-wild scenes, we adopt a center-aligned placement
strategy to address camera vignetting effects, which can im-
pact color accuracy near image edges. This consistent central
positioning not only mitigates lens shading issues but also
demonstrates our method’s flexibility in color checker place-
ment. The results Fig. 12 validate our approach’s robustness
in practical photography applications, showing consistent
performance in white balance correction despite the fixed
central placement strategy.

C.3. Interactive Visualization
We provide an interactive HTML interface that visualizes re-
sults with color checkers placed at different locations within
scenes. The visualization demonstrates that our method pro-
duces accurate outputs with minimal variation across differ-
ent placement positions. The results show that the estimated
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Figure 9. Failure cases. Our approach struggles when there is a
significant mismatch between the illumination of the original color
checker and the ambient lighting in the scene.

Table 9. Analysis of different pyramid levels in Laplacian composi-
tion. Results are trained on the NUS-8 dataset [19] and tested on
Gehler dataset [33] .

Level Mean Median Best-25% Worst-25%

L = 1 3.53 3.27 1.48 6.03
L = 2 2.35 2.02 0.78 4.57
L = 3 3.16 2.83 1.25 5.62

illumination values consistently cluster near the ground truth
target regardless of the checker’s position, confirming our
method’s reliability and position-independence in illumina-
tion estimation.

D. Limitations
As shown in Fig. 9, our method struggles when there is a
significant mismatch between the inpainted color checker
and the scene’s ambient lighting. This typically occurs in
challenging scenarios with multiple strong light sources of
different colors or complex spatially-varying illumination.
While diffusion models provide strong image priors, they
sometimes prioritize visual plausibility over physical accu-
racy, especially in extreme lighting conditions.

Our approach also shows sensitivity to dataset size, simi-
lar to personalization effects observed in DreamBooth [62].
For datasets with limited samples, we need to crop smaller
mask regions to ensure the model can effectively learn the
color checker’s appearance and structure. In our experiments,
we found that when the training dataset is extremely small,
the model generates color checkers with unexpected appear-
ances and distorted structures, preventing accurate color
extraction for illumination estimation. This limitation sug-
gests potential future directions for improving our method
through more efficient learning strategies or additional data
augmentation techniques to better handle scenarios with lim-
ited training data.
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Figure 10. Qualitative results for the NUS-8 dataset [19].
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Figure 11. Qualitative results for the Gehler dataset [33].
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Figure 12. Qualitative results for in-the-wild images with center-placed color checkers.
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