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Abstract: Conventional illuminant estimation methods were developed for scenes with a
uniform illumination, while recently developed methods, such as pixel-wise methods, estimate
the illuminants at the pixel level, making them applicable to a wider range of scenes. It was
found that the same pixel-wise algorithm had very different performance when applied to images
with different bit-depths, with up to a 30% decrease in accuracy for images having a lower
bit-depth. Image signal processing (ISP) pipelines, however, prefer to deal with images with a
lower bit-depth. In this paper, the analyses show that such a reduction was due to the loss of
details and increase of noises, which were never identified in the past. We propose a method
combining the L1 loss optimization and physical-constrained post-processing. The proposed
method was found to result in around 40% higher estimation accuracy, in comparison to the
state-of-the-art DNN-based methods.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Image signal processing (ISP) pipeline contains multiple stages, such as demosaicing [1],
denoising [2], and white balance [3,4], to process the RAW images captured by camera sensors.
White balance adjusts the RGB values of all the pixels based on the estimated illuminant, which
helps to remove the color cast caused by the illumination and makes the image color appear
similar to what humans perceive. Many algorithms have been developed to automatically estimate
the illuminant in a scene and perform the adjustment, which is known as auto white balance
(AWB).

Most AWB algorithms, such as Hu et al. [5] and Yue et al. [6], assume that there is only
one illuminant in a scene. It is commonly violated in real scenes, resulting in bad performance.
Thus, new algorithms have been proposed in recent years to deal with scenes containing multiple
illuminants, such as [7–11]. In particular, patch-wise and pixel-wise algorithms are popular.
Patch-wise algorithms (e.g., [8]) divide an image into multiple patches and estimate the illuminant
for each patch, with the boundaries between patches found to cause issues. In contrast, pixel-
wise algorithms (e.g., [7,9,10,12]) estimate the illuminant for each pixel, which is considered
promising.

Gray pixel algorithm [13] is an early example of pixel-wise algorithms. It identifies gray pixels
in an image and uses these pixels, together with a filtering process, to estimate the illuminant for
each pixel. Its performance significantly depends on how accurately the gray pixels are predicted.
Since the adoption of DNN in AWB algorithms in 2015 [5,6,14,15], DNN-based pixel-wise
algorithms have also been developed. The GAN-based algorithm introduced in [12] becomes
a milestone for pixel-wise algorithms. It uses a generative adversarial network to address the
challenges of non-uniform and multiple illuminates, but sometimes introduces artifacts [10].
The collection of the Large Scale Multi-Illuminant (LSMI) dataset [7] allowed the development
of more DNN-based methods, such as a U-Net method [7]. TranCC [10] method adopts a
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transformer-based multi-task learning framework, which outperforms the past methods; SMM [9]
uses a self-supervised technique and employs Transformer-based encoders for multi-illuminant
scenes, setting a new benchmark for the LSMI dataset.

When performing analyses on pixel-wise methods, such as U-Net, we found that the performance
decreases for cameras or images with lower bit-depths and for images having a single-illuminant,
as illustrated in Fig. 1 and described in detail in Section 2. This is especially critical to the ISP
pipeline, as a lower bit-depth is always preferred due to the higher efficiency and lower memory.
In this article, we propose a new method to mitigate such a weakness, which has been found
effective.
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Fig. 1. Illustration of the lower performance of U-Net [7], when applying on cameras/images
with different bit-depths and images with single and multiple illuminants. (a) Comparison
between 14-bit images captured by a Nikon camera and 10-bit images captured by a Galaxy
camera; (b) Comparison between 10-bit images with a single illuminant and multiple
illuminants captured by a Galaxy camera.

2. Problem and preliminary analysis

2.1. Observations

Based on our initial observations, we performed an analysis. U-Net [7] and FC4 [5] methods, the
state-of-the-art DNN-based pixel-wise methods, were applied on images captured by a Nikon
camera in the LSMI dataset [7]. Here, FC4 was revised to consider multi-illuminant scenes with
weighted output layers. To evaluate the impact of image bit-depth, the images were originally
14-bit, but were converted to 12-, 10-, and 8-bit using:

Ibd = R
(︃

I
214 − 1

× (2bd − 1)
)︃

, (1)

where R(·) is the rounding operation and bd is the bit-depth.
It can be clearly observed that the performance of both methods, as characterized using the

mean angular error between the ground truth and estimated illuminants, was worse when the
image bit-depth was lower, as shown in Fig. 2.

2.2. Preliminary analyses and problem statement

Such an effect was speculated to be due to the loss of image details and increase of image noises,
since image details play an important role in estimating the scene illuminants and are considered
in various AWB methods. Thus, the gray-edge method [16], which is sensitive to image details,
the white-patch [17], gray-world [18], and Cheng-PCA methods [19], which are less reliant on
image details, were used to estimate the illuminants of the images in the LSMI dataset [7], with
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Fig. 2. Performance of U-Net [7] and FC4 [5] methods, the state-of-the-art DNN-based
pixel-wise methods, in terms of the mean angular error on the images captured by a Nikon
camera in the LSMI dataset [7] with different bit-depths.

the results shown in Fig. 3. It can be clearly observed that the performance of the gray-edge
method is very sensitive to the change of image bit-depth, while the other three methods have very
similar performance regardless of the bit-depths. This clearly suggests that the images having a
lower bit-depth lose image details. Meanwhile, it was found that images with a lower bit-depth
also have higher noises, especially in the regions with smooth changes in color or brightness,
since a lower bit-depth makes it difficult to capture smooth changes. Figure 4 illustrates that an
image with a lower bit-depth contains greater noises.

Fig. 3. Comparison of the performance of the methods that are sensitive to details (i.e.,
gray-edge) and those that are not sensitive to details on the images with different bit-depths.

Fig. 4. Illustration of the increase of image noises due to the lower image bit-depth, with
the noises shown in red. (Note: the noise was the difference between the 14-bit image and
the images having lower bit-depths.)
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When developing AWB algorithms, angular error is commonly selected as a loss function
[5,6,8], and L2 loss is also sometimes selected [7,8]. The selection of the loss function seems to be
a minor issue for developing and comparing conventional AWB algorithms for single-illuminant
scenes. Our investigations, however, suggest that it seem to be critical for developing the
pixel-wise algorithms that are noise-sensitive, and L1 loss seems to be less sensitive to outliers
and can better handle the noises in low bit-depth images.

On the other hand, the development of AWB algorithms for practical implementations in
ISP pipelines needs to consider the memory usage and computational power. Therefore, the
algorithms that can be deployed on images with a lower bit-depth are always preferred, though a
greater bit-depth allows to have a greater number of tones, helping to capture more details and
subtle variations in a scene.

The above analyses clearly show a trade-off between image bit-depth and algorithm performance
for pixel-wise AWB algorithms. Deploying these algorithms on images with a lower bit-depth in
ISP pipelines can help to reduce the computational power but at the expense of accuracy.

3. Proposed method

With the above in mind, we propose a pixel-wise AWB algorithm to achieve a balance between
accuracy and computational power for images with a lower bit-depth. The algorithm is developed
based on the U-Net architecture proposed by Kim et al. [7]. L1 loss, instead of L2 loss, is used
to reduce the influence of image noise. A physical-constrained post-processing technique is
employed to significantly improve the estimation accuracy. Figure 5 shows the overall strategy of
our proposed method. It should be noted that a large number of the images included in the LSMI
dataset are indoor scenes with single or multiple LED sources, which commonly have a purplish
tint as shown in the predicted illuminant maps in Fig. 5.

3.1. Baseline method: LSMI-U

The LSMI-U model [7], the basis of our proposed method, employs a U-Net architecture
optimized for 256 × 256 input images. It pre-processes the images by converting RGB values
into one luminance (l) and two chrominance values (u, v), as defined:

l = log(IG + ϵ),
u = log(IR + ϵ) − log(IG + ϵ),
v = log(IB + ϵ) − log(IG + ϵ).

(2)

Where IR, IG, and IB represent the red, green, and blue channel values respectively and ϵ is a
small constant for avoiding a zero value.

3.2. Using L1 loss for training

In our proposed method, L1 loss is used to train a U-Net model for predicting the pixel-wise
illuminants. L1 loss is less sensitive to outliers and more robust to noises in low bit-depth images,
as it reduces the impacts of extreme deviations that are likely to be noise artifacts, while L2 loss
uses the square of the error term. The L1 loss is calculated for all the pixels in an image as
follows:

Lmodel =
1
N

N∑︂
i=1

|li − l̂i |, (3)

where N is the total number of pixels, li and l̂i are the ground-truth and estimated illuminants of a
pixel i.
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Fig. 5. Overview of our proposed method.

3.3. Physical-constrained post-processing

Physical-constrained processing is commonly used in AWB algorithms for illuminant estimation
[20–22] and correction [23] in single-illuminant scenes. For multi-illuminant scenes, the
illuminant at a pixel may be considered as a mixture of two major illuminants the scene [7] for
simplification [24], expressed as li = α · l1 + (1 − α) · l2 with l1 and l2 representing the two major
illuminants. Such an assumption is believed to be reasonable for most common cases in practice,
but not valid for all the cases.

Based on such a concept, our proposed method clusters the predicted pixel-wise illumination
map to identify the two major illuminants. This helps to differentiate the pixels with and
without high noises, facilitating noise removal and illuminant estimation. The proposed physical-
constrained post-processing on the illumination map l̂orig, as illustrated in Fig. 5, includes four
steps.

1. Identification of two major illuminants: l̂orig is transformed into the rb space using
Eq. (2), with the two major illuminants l1 and l2 identified using the K-means clustering
method.

2. Identification of noise: To classify the pixels from the predicted illumination map l̂orig
into those with and without noise, we first discretize the segment between the two estimated
major illuminants l1 and l2 into equidistant points {Pk}. Each point can be considered
as the center of a tolerance range, with a circle representing the possible range of the
actual illuminants of the mixture. Pixels falling outside these circles are considered
noises. Such a method allows certain levels of deviations from an ideal mixture of the two
major illuminants along a linear line, providing some levels of flexibility and tolerance.
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The identification of pixels with and without noise can be expressed using the following
equation:

noisy(p) =

{︄
1 if ∀k, ∥ l̂p − Pk∥>σ

0 otherwise
(4)

In our implementation, it is found that the number of equidistant of 10 and the radius of the
tolerance circle of σ = 0.2 can result in a good performance, in terms of noise reduction.

3. Noise removal: For removing the noise, the image is firstly divided into four quadrants
(i.e., upper left, upper right, bottom left, and bottom right). The estimated illuminant
of a noise pixel is replaced with the average estimated illuminant in the corresponding
quadrant with all the noise pixels in the quadrant removed. Such a method is based on the
premise that light propagation tends to be linear, making the localized average a better
representation of the actual illuminant than the global mean:

l̂′p =
1
|Q|

∑︂
q∈Q

l̂q, (5)

where Q is the quadrant containing pixel p, and |Q| is the number of the pixels in Q with
all the noise pixels removed.

4. Adjustment of illuminant: After noise removal, the angular difference between the
identified major illuminants l1 and l2 is evaluated to judge whether the scene contains a
single illuminant or not. If the angular difference is smaller than θthreshold, the scene is
considered to have a single illuminant, and the illumination map l̂proc is adjusted to be
the average values after the noise removal, which is considered to produce more reliable
estimation.

l̂proc =

{︄
1
N
∑︁

p∈non-noisy l̂′p if ∠(l1, l2)<θthreshold

l̂′p otherwise
(6)

In our implementation, θthreshold is set to 3 degrees.

By following these steps, the original predicted illumination map l̂orig is revised to l̂proc, which
achieves a balance between performance and memory size.

4. Experiment and results

4.1. Benchmark dataset: LSMI dataset

The LSMI dataset [7] was used to evaluate the performance of the proposed method. It includes
7,486 images from around 3,000 real scenes, captured by three distinct cameras under various
lighting conditions. The images also have different bit-depths, such as 14-bit for those captured
by a Nikon DSLR, 12-bit for those captured by a Sony camera, and 10-bit for those captured by a
Samsung Galaxy Note 20 Ultra. Such different bit-depths allow us to test the performance of the
proposed method. For the pixel-wise ground truth illuminants in the LSMI dataset, interpolation
between two illuminants was used, which is a common approach due to the difficulty in collecting
accurate pixel-wise illuminant data. Such an interpolation method is based on the physical
principles and considered accurate for most scenes with gradual changes between illuminants.

4.2. Experiments settings

Two strategies (i.e., training from scratch and fine-tuning from LSMI-U [7]), were explored,
with both using the L1 loss. For the from-scratch approach, the model underwent 1000 epochs
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of training with an initial learning rate of 5 × 10−4. For the fine-tuning approach, the model
underwent 500 epochs with a learning rate of 5 × 10−5. The experiment was carried out using an
NVIDIA GeForce RTX 4090 GPU.

4.3. Error function

The mean angular error (MAE) across all the pixels in an image was employed as the error
function. The angular error characterizes the discrepancy between the predicted and ground-truth
illuminants for each pixel, with the mean of the angular errors characterizing the entire image:

MAE =
1
N

N∑︂
i=1

180
π

arccos
(︃

li · l̂i
∥li∥ · ∥ l̂i∥

)︃
, (7)

where N is the total number of pixels in an image, li is the ground-truth illuminant for a pixel i,
and l̂i is the estimated illuminant for the same pixel. Vectors li and l̂i are normalized to a unit
length, and the error is presented in degrees.

4.4. Results

Table 1 summarizes the angular errors derived from various AWB methods, including the
traditional methods (i.e., gray-world [18], white-patch [17], gray-edge [16], and Cheng-PCA
[19]), DNN-based methods (i.e., patch-CNN [8], angular-GAN [12], SMM [9], TRCC [10], and
LSMI-U [7]), and our proposed methods. It can be observed that our proposed methods had
better performance, especially when the physical-constrained post-processing was included. In
addition, the fine-tuning strategy resulted in slightly better results than the training from scratch
strategy, which was likely to due to the initial L2 loss training for bringing a more stable global
optimum.

Table 1. Summary of the performance of various AWB
methods, including the traditional methods (i.e., gray-world
[18], white-patch [17], gray-edge [16], and Cheng-PCA [19]),
DNN-based methods (i.e., patch-CNN [8], angular-GAN [12],

SMM [9], TRCC [10], and U-Net [7]), and our proposed
method, with the best results highlighted in bold.

Method Mean Median Worst%25 Best%25

gray-world 11.3 8.8 20.7 4.9

white-patch 12.8 14.3 23.5 5.6

gray-edge (1st) 12.1 10.8 22.6 5.3

Cheng-PCA 10.9 10.7 20.8 4.8

patch-CNN 4.82 4.24 - -

angular-GAN 4.69 3.88 - -

SMM 2.73 2.10 - -

TRCC 2.78 2.15 - -

LSMI-U 2.63 1.91 5.01 1.12

U-L1 (from scratch) 2.50 2.10 4.91 1.13

+Post-processing 2.00 1.67 4.0 0.43

U-L1 (fine-tuned) 2.23 1.76 4.23 0.89

+Post-processing 1.80 1.47 3.70 0.40

The proposed method, together with the state-of-the-art DNN methods (i.e., SMM [9] and
LSMI-U [7])), was evaluated on images with different bit-depths from 10-bit to 14-bit, with the
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Fig. 6. Examples of the images processed with U-Net and our proposed method. From
left to right: input RAW image (RAW), ground-truth image (GT_img), LSMI-U corrected
image (U-Net), our proposed method corrected image (Ours), ground-truth illumination map
(GT_illu), angular error map between U-Net estimation and ground-truth (Error U-Net), and
angular error map between our proposed method estimation and ground-truth (Error Ours).
The mean angular error value is shown at the top right corner of each error map. (Note: the
images are shown in a nonlinear gamma space for better visualization).

Table 2. Summary of the performance, in terms of the mean and median angular errors, of the
SMM, U-Net, and our proposed method on images with the different bit-depths in the LSMI dataset,

with the best performance highlighted in bold.

Method
10 bit (Galaxy) 14 bit (Nikon) 12 bit (Sony)

Single Multi Mixed Single Multi Mixed Single Multi Mixed

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

SMM [9] 3.20 2.36 2.63 2.33 2.88 2.33 1.60 1.20 2.48 1.99 2.05 1.49 2.60 2.29 2.98 2.69 2.82 2.49

LSMI-U [7] 3.31 1.90 2.56 2.09 2.90 1.91 1.52 1.19 2.36 1.76 1.96 1.44 2.76 2.36 3.00 2.77 2.90 2.62

Ours 1.38 0.77 2.28 1.91 1.87 1.57 1.01 0.65 2.24 1.68 1.65 1.25 1.11 0.74 2.36 2.01 1.81 1.57

results summarized in Table 2 and examples of images shown in Fig. 6. It can be clearly observed
that the proposed method outperformed the two state-of-the-art methods, and it was much less
sensitive to the change of the image bit-depths. We also performed such tests and analyses on
images captured by a same camera (i.e., Nikon) with the image bit-depth changed using Eq. (1),
and found similar results.
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5. Discussions

5.1. Performance on single-illuminant dataset

To further validate the robustness of our proposed method, an additional experiment was carreid
out using the Cube+ dataset [25]. The dataset includes a large number of high-quality images
with a single illuminant, which was specifically collected for developing DNN-based methods
and provides a reliable benchmark for evaluating different methods. We used three-fold cross-
validation and standard angular error metrics as described in [6,19]. The predicted illumination
map was used following [10], with the mean of the map used for the LSMI-U data. For our
proposed method, we used the L1 loss for training to derive the prediction, applied the noise-free
strategy to obtain the noise-free map, and then calculated the mean as the final predicted
illuminant. The results, as summarized in Table 3, show that our proposed method results
in smaller mean angular error for single-illuminant scenes. The smaller median and worst
25% results of the TRCC method were likely due to the use of contrastive learning for data
augmentation. The improvements introduced by our proposed method on the Cube+ dataset
seem to be less significant, in comparison to those on the LSMI dataset. This is believed due to
the fact that the images included in the Cube+ dataset were mainly captured in daytime with
good lighting conditions, making the impact of lower bit-depths less pronounced.

Table 3. Summary of the performance on the Cube+ dataset
for single-illuminant scenes, with the best performance

highlighted in bold.

Method Mean Median Worst 25% Best 25%

gray-world 7.71 4.29 20.19 1.01
white-patch 9.69 7.48 20.49 1.72

TRCC 2.71 1.59 3.21 1.05

LSMI-U 2.68 2.14 3.47 1.19

L1+Post-processing 2.54 1.94 3.33 1.10

5.2. Comparison to noise removal using filters

Filters are commonly used in image processing to remove noises, so a comparison was made
between our proposed method and the implementation of two filters (i.e., Gaussian and median
filters). The results, as summarized in Table 4, clearly suggest the better performance of our
proposed method. In particular, a median filter was able to reduce the mean angular error by
5% and a Gaussian filter did not introduce any improvement at all, which was likely due to the
prevalence of salt-and-pepper noise. In contrast, our proposed method was able to introduce a
significant reduction of the mean angular error, with the adoption of the physical-constrained
post-processing effectively reducing the mean angular error by 20%. When combined with the
L1 loss optimization, the mean angular error was reduced by 30%, which clearly illustrates the
effectiveness of the proposed method.

5.3. Limitations

Though the results above clearly show the effectiveness of our proposed method in improving
the accuracy of illuminant estimation, it relies heavily on the results of the initial illuminant
estimation l̂orig. When the initial estimation has poor performance, the proposed method adopting
the L1 loss optimization and physical-constrained post-processing may have little effect. This
highlights the importance of the initial estimation.

Additionally, the proposed method is based on the assumption that any pixel in a multi-
illuminant scene can be considered as a mixture of two major illuminants, which is believed to be
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Table 4. Comparison of the performance, in
terms of the mean and median angular errors,

of using median filters, Gaussian filters, and our
proposed method on the images in the LSMI

dataset. (s represents the filter size and σ is the
standard deviation of the Gaussian filter.)

Method Mean Median

Baseline (LSMI-U) 2.63 1.91

Median filter (s=5) 2.53 1.80

Median filter (s=9) 3.54 1.78

Gaussian filter (s=10, σ = 0.05) 3.20 1.92

Gaussian filter (s=50, σ = 0.25) 6.07 2.07

LSMI-U+Post-processing 2.09 1.78

L1+Post-processing 1.80 1.47

a reasonable assumption for most common scenes in real life. This can also be supported by the
good performance when applied to the scenes containing three illuminants in the LSMI dataset.
Future work, however, is still needed to explore scenes containing more illuminants to allow a
good performance for a wider range of conditions.

6. Conclusion

The performance of pixel-wise AWB algorithms was found to vary with image bit-depths. We
performed an analysis and found that they tend to have worse performance on images with a
lower bit-depth. This was found due to the increase of noises and loss of details in the images
with a lower bit-depth. Given the fact that a lower bit-depth is always preferred in ISP pipelines,
we proposed a method using an L1 loss optimization and a physical-constrained post-processing.
The proposed method was found to outperform the traditional and the state-of-the-art DNN-based
methods, especially on images with a lower bit-depth.
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