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Great efforts have been made on illuminant estimation in both academia and industry, leading to the development
of various statistical- and learning-based methods. Little attention, however, has been given to images that are
dominated by a single color (i.e., pure color images), though they are not trivial to smartphone cameras. In this
study, a pure color image dataset, “PolyU Pure Color,” was developed. A lightweight feature-based multilayer per-
ceptron (MLP) neural network model—“Pure Color Constancy (PCC)”—was also developed for estimating the
illuminant of pure color images using four color features (i.e., the chromaticities of the maximal, mean, brightest,
and darkest pixels) of an image. The proposed PCC method was found to have significantly better performance for
pure color images in the PolyU Pure Color dataset and comparable performance for normal images in two existing
image datasets, in comparison to the various state-of-the-art learning-based methods, with a good cross-sensor
performance. Such good performance was achieved with a much smaller number of parameters (i.e., around 400)
and a very short processing time (i.e., around 0.25 ms) for an image using an unoptimized Python package. This
makes the proposed method possible for practical deployments. © 2023 Optica Publishing Group

https://doi.org/10.1364/JOSAA.482698

1. INTRODUCTION

Computational color constancy aims to adjust the colors in an
image to how they would appear under a canonical illuminant,
which is achieved by removing the color cast of the illuminant.
For modern digital cameras (e.g., smartphone cameras), it is
equivalent to auto white balance and considered as a critical step
in image signal processing pipeline to affect the image quality.
Great efforts have been made to develop methods for estimating
the illuminant of the captured images, leading to the develop-
ment of various statistical- and learning-based methods [1]. A
comprehensive review of the various methods is out of the scope
of this article, and only the representative methods are discussed
here.

Conventional statistical-based methods generally make
some assumptions about the statistical characteristics of the
illuminant and/or the colors in a scene, such as white patch [2],
gray world [3], shades of gray [4], bright [5], and PCA-based [6]
methods, since estimating the illuminant of a scene is actually an
ill-posed problem. For example, the gray world method assumes
that the average color of all the pixels in an image should be
neutral. These statistical-based methods can be implemented
efficiently in practice, but their assumptions are not always
satisfied in real scenes. Therefore, they commonly result in inac-
curate illuminant estimations and, thus, poor image quality. For
instance, when a captured scene is dominated by a single color
(i.e., a pure color image), the assumptions made by the above
methods would be violated.

Recently, deep neural network (DNN) has been adopted in
the development of learning-based methods, which has been

found to have good performance initially in Bianco et al. [7].
An image is commonly divided into many regions, with the
estimated illuminant of each region used to estimate the illu-
minant of the entire image. Hu et al. [8], however, found that
the illuminants estimated from ambiguous regions, which are
dominated by a single pure color, could be significantly different
from those estimated from the regions containing semantic
information since a given set of camera r g b values could suggest
either a surface having such r g b values under a white illuminant
or a white surface under an illuminant with such r g b values.

Similar conditions could also happen to an entire image, with
the entire image containing an individual color (i.e., a pure color
image). This makes the image lack semantic information for
illuminant estimation. Such images indeed are common in daily
life, with some examples shown in Fig. 1(a). The recent devel-
opment of smartphone cameras allows close-up (i.e., macro)
and telephoto shots, making pure color images appear more fre-
quently, with some examples shown in Fig. 1(b). No past work,
however, has investigated the performance of various existing
methods for such pure color images, and none of these methods
were developed by considering the characteristics of such pure
color images. More importantly, no pure color image dataset is
available, which could be the reason for the lack of research.

With the above in mind, this article introduces a pure color
image dataset—“PolyU Pure Color”—with Fig. 1(a) showing
some examples, and also a lightweight feature-based DNN
method—“Pure Color Constancy (PCC)” method—for
estimating the illuminant of pure color images. This method
was found to significantly improve the accuracy of illuminant
estimation for pure color images, as well as other normal images,
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Fig. 1. Examples of pure color images (i.e., an image that is dominated by a single pure color): (a) example images contained in the “PolyU Pure
Color” dataset collected by us (note: the images are shown with a gamma correction for better visualization); (b) example close-up (i.e., macro) and
telephoto shots captured using smartphones.

in comparison to the current state-of-the-art methods. More
importantly, this method only contains around 400 parameters
and takes around 0.25 ms to process an image in an unoptimized
Python version, which makes it possible for implementation in
practice.

2. “PolyU PURE COLOR” IMAGE DATASET

A. Existing Datasets for Illumination Estimation

There are several image datasets that are widely used in various
research, such as the ColorChecker [9], NUS-8 [6], Cube+
[10], and TAU datasets [11], but none of them were purposely
collected to include pure color images. The ColorChecker
dataset consists of 568 high-resolution RAW images captured
by two cameras (i.e., Canon 1D and Canon 5D). The original
images were processed by Shi and Funt to 16-bit linear TIFF
images [12]. The dataset was later updated to the Recommend
Color Checker (CC2018) dataset with better ground-truth
illuminants [13]. The NUS-8 dataset contains 1736 images
captured by eight cameras, with only around 210 images cap-
tured by each camera, which is considered relatively small for
developing learning-based methods [10]. The Cube+ dataset
contains 1707 images captured by one camera. The distribu-
tion of the ground-truth illuminants of these 1707 images is
generally similar to that of the images in the NUS-8 dataset.
This can probably explain why a method trained on the NUS-8
was found to have better performance on the Cube+ dataset,
which will be discussed in detail in Section 5. The TAU dataset
contains 7022 images captured by three cameras, which is
considered the largest dataset for illumination estimation.

B. “PolyU Pure Color” Dataset

The PolyU Pure Color image dataset was purposely collected to
contain pure color images, including outdoor scenes (e.g., green
grass, blue sky, and flowers) and indoor scenes (e.g., illuminated
fabrics and walls). Currently, the dataset contains 102 RAW
images (i.e., DNG file) that were captured using a Huawei P50
Pro smartphone camera with automatic settings. The original
images were 12 bits, with a resolution of 4096× 3072, in a
BGGR pattern, with a black level of 256 for each channel. The
images were processed with the black level subtracted, the two G

values averaged, the resolution downsampled to 2048× 1536,
and saved in a PNG format.

When capturing each image, another image, with an X-Rite
ColorChecker placed in the scene, was captured, allowing the
collection of the ground-truth illuminant in the scene. The
ground-truth illuminant was then calculated using the r g b
values of the 20th patch in the color checker (i.e., the second
patch in the last row), with the noise reduced using a filter, and
the normalized r g b values of the 24 patches are saved in the
JSON file so that the images can be processed directly without
masking the color checkers. The images and the r g b values of
the 24 patches can also be used for data augmentation [8,14,15].
Both the images with and without the color checker were also
saved in a JPG format, which was processed by the smartphone
automatically for visualization. Figure 2 shows the example of
one image set, including the RAW images with and without
the color checker and the JPG images for visualization. The
thumbnails of the images included in the dataset are shown in
Appendix A.

Though the number of images contained in the dataset is rel-
atively small, in comparison to other existing datasets (e.g., the

Fig. 2. Example of an image set included in the “PolyU Pure Color”
dataset. Top row, RAW images; bottom row, JPG images; left column,
images without the color checker; right column, images with the color
checker.

© 2023 Optica Publishing Group. Personal use only.
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Cube+ dataset), the images were purposely captured to be dom-
inated by a single color, and the color checker information is
available for data augmentation.

3. PROPOSED “PURE COLOR CONSTANCY”
METHOD

A. Related Work

Many past works have suggested the effectiveness of estimating
illuminants based on important features. The Convolutional
Color Constancy (CCC) method [16] considers a 2D log-
chromaticity histogram as a critical feature, translating the
illuminant estimation problem to a classification problem.
Then the FFCC method [17], which performs the convolu-
tional operation with a fast Fourier transform (FFT) instead of
a Gaussian pyramid, was proposed. Though the FFCC method
is significantly faster, it does not always have a higher accuracy
than the CCC method [18]. In addition, both the CCC and
FFCC methods need the generation of a histogram of each
image, which is time consuming and requires great computa-
tional power, in terms of floating point operations (FLOPs).
Moreover, these two methods treat the illuminant estimation as
a classification problem, with the estimated illuminants selected
from the image histogram chromaticities (i.e., the log UV chro-
maticities), which causes the performance to be significantly
affected by the size of the histogram.

On the other hand, a greater number of feature-based meth-
ods adopt regression methods. For example, Finlayson [19] used
the results of the gray world method (i.e., the mean RGB values
of the training images) as the inputs for the iterative least squares
regression method, leading to much better performance than
many learning-based methods and suggesting the effectiveness
of using simple features for illuminant estimation. The method
using the regression tree proposed by Cheng et al. [20] uses four
color features (i.e., average chromaticities, brightest chroma-
ticities, dominant color chromaticities, and the chromaticity
mode of the color palette) as the inputs. The latter two features
require the generation of histograms for each image, which is
costly for both processing time and resources, with a model size
of 31.5 MB.

B. “Pure Color Constancy” Method

Our proposed PCC method is inspired by the above feature-
based methods, especially the method proposed by Cheng
et al. [20]. Our method, however, aims to perform illuminant
estimation based on important color features without requiring
complicated pre-processing. For a captured scene, the normal-
ized maximal, mean, brightest, and darkest pixel values are likely
to vary under different illuminants, as illustrated in Fig. 3(a),
which are considered as four important features for estimating
the illuminant. Moreover, based on the images in the PolyU
Pure Color Image dataset, we found that these four features tend
to form a cluster that can be easily identified, as illustrated in
Fig. 3(b).

Thus, the PCC method was designed to use four
important color features, in terms of the normalized chro-
maticities {r , g } = {R, G}/(R + G + B), as the inputs,
which are intensity invariant [10]. These four color

Fig. 3. Illustration of the four important color features—
normalized maximal, mean, brightest, and darkest chromaticities—of
different captured scenes. (a) Identical scene under two illuminants,
with the four features varying with the illuminants; (b) normal scene
versus a pure color scene, with the four features clustered together for
the pure color scene, suggesting the effectiveness in identifying a pure
color image based on these four features.

features are as follows: (1) max chromaticities: the chro-
maticities of the maximal RGB values in each channel
(2) mean chromaticities: the chromaticities of the mean
RGB values in each channel; (3) brightest chromatici-
ties: the chromaticities of the pixel having the largest R +
G + B value; and (4) darkest chromaticities: the chro-
maticities of the pixel having the smallest R + G + B
value.

These four sets of chromaticities are used as the inputs for
a lightweight multilayer perceptron (MLP) neural network,
which was inspired by [21]. As shown in Fig. 4, the network
only contains five hidden layers, with each layer only containing
eight neurons and a corresponding ReLU operation. In total,
there are around 400 parameters for this shallow network. The
output of the network is a set of estimated chromaticities (r̂ , ĝ )
for the illuminant in the 2D chromaticity color space, with b̂
calculated as 1− r̂ − ĝ . The proposed PCC method only takes
0.25 ms to process an image, based on an unoptimized Python
version, which is around 10 times faster than the FFCC method
(Model Q), which takes around 2.37 ms for each image [17],
and around 100 times faster than the FC4 method, which takes
around 25 ms for each image [8]. Moreover, the number of the
parameters of the proposed PCC is around 20 times smaller
than that of the FFCC method (8200 parameters) and around
10,000 times smaller than that of the FC4 method (4,340,000
parameters).

© 2023 Optica Publishing Group. Personal use only.
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Fig. 4. Overview of the proposed PCC method, with the four color features, in terms of the normalized chromaticities, as the inputs for a
lightweight multilayer perceptron (MLP) neural network. It predicts a set of 2D (r̂ , ĝ ) chromaticities as the estimated illuminant L̂ .

4. EXPERIMENT AND RESULTS

A. Settings

The network was trained in PyTorch [22], and Adam [23] was
adopted as the optimization algorithm, with a learning rate of
10−3 and a cosine annealing schedule [24]. The batch size was
set to 1, and the model with the best performance through a total
of 10,000 or 100,000 epochs was saved (note: the 10,000 epochs
for the CC2018 dataset, and the 100,000 epochs for the other
datasets). The standard angular error between the estimated
and ground-truth illuminants, as calculated using Eq. (1), was
adopted as the error and loss function,

error=
180

π
arccos

(
L̂ · L

‖L̂‖ · ‖L‖

)
, (1)

where L̂ is the estimated illuminant and L is the ground-truth
illuminant.

B. Data Augmentation and Pre-Processing

There are various methods for performing data augmentation
for color images. For example, small images that are cropped
from a high-resolution image can be used as the training set,
with the uncropped regions used as the testing set [18]. On the
other hand, some other data augmentation methods adopt a
full-matrix (Full-Aug) [14,15] or a diagonal-matrix (AWB-Aug)
[8] to transform the original images, which shares a similar
concept as relighting.

We adopted the AWB-Aug method for data augmentation,
multiplying a 3× 3 diagonal matrix M, with the diagonal
elements of [ra/ro , g a/g o , ba/bo ], to an original image I0 to
derive an augmented image Ia (i.e., Ia = I0 ×M). Though this
was adopted in [8], the data augmentation was performed by
randomly assigning the RGB values between 0.6 and 1.4, which
could lead to illuminants that do not exist in reality. Therefore,
we carefully selected a series of illuminants from all the real
illuminants of the captured images in the datasets. Then the data

Fig. 5. Illustration of the data augmentation. The red dots are the
chromaticities of a series of illuminants that were carefully selected
from the illuminants of the captured images in the dataset. The data
augmentation was performed by randomly assigning the RGB values
with the chromaticities within the green circle, with the chromaticity
distance below 0.01 to the selected illuminants.

augmentation was performed by randomly assigning the RGB
values with the chromaticity distance to the selected illuminants
smaller than 0.01, as illustrated in Fig. 5.

The raw images were resized to a resolution of 64× 64, with
a batch of the resized images fed to the network for training and
testing. The dark and saturated pixels, with the r , g , or b value
below 0.02 or beyond 0.98, were removed. The standard three-
fold validation method with a fixed seed was used in the experi-
ment.

C. Results

1. “PolyUPureColor”Dataset

The performance of the proposed method on pure color
images in the PolyU Pure Color dataset was compared with
various statistical-based methods—white patch (WP), grey

© 2023 Optica Publishing Group. Personal use only.
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Table 1. Summary of the Performance of Various Statistical- and Learning-Based Methods, and the Proposed PCC
Method, on the PolyU Pure Color Dataset, in Terms of the Angular Errors between the Estimated and Ground-Truth
Illuminants

a

Method Mean Med. Tri. Best 25% Worst 25%

WP 9.64 8.78 8.93 2.78 17.25
GW 10.37 8.14 8.67 2.60 21.40
SoG (p = 3) 9.66 8.03 8.13 2.38 19.92
Bright (p = 5) 8.96 6.92 7.24 2.01 19.57
PCA (p = 3.5) 8.32 6.72 6.81 1.74 18.4
FC4 (Squeeze Net) 4.42 3.81 4.05 1.27 8.38
FFCC (Model Q) 3.56 1.97 3.05 0.58 9.39
PCC 3.23 1.40 1.86 0.48 8.76

aThe listed methods were reevaluated with the parameters shown in the parentheses.

Fig. 6. Examples of the images in the PolyU Pure Color dataset. Column (A) shows the raw image, columns (B) to (F) show the images that were
white balanced using the estimated illuminants derived using the existing methods, column (G) shows the image that was white balanced using the
estimated illuminant derived using the proposed PCC method, and column (H) shows the image that was white balanced using the ground-truth illu-
minant. The angular error between the estimated and ground-truth illuminants is shown in each image (note: all the images are shown with a gamma
correction for better visualization).

© 2023 Optica Publishing Group. Personal use only.
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world (GW), shades of gray (SoG), bright pixels (Bright),
and Cheng’s PCA method (PCA)—and various state-of-the-
art learning-based methods—FFCC and FC4, which were
retrained according to the literature. Table 1 summarizes and
compares the performance based on the angular error between
the estimated and ground-truth illuminants, in terms of the
mean, median (Med), trimean (Tri), best 25%, and worst 25%,
with some example images shown in Fig. 6.

Table 1 clearly shows that the FFCC method resulted in
the smallest angular errors among all the existing methods,
and the proposed PCC method outperformed all the existing
methods, with the angular errors significantly reduced. Though
the FFCC method resulted in the smallest angular errors for
some individual images, as shown in Fig. 6, the proposed PCC
method generally had better performance with little variation
on average.

2. CC2018 andNUS-8Datasets

In addition to pure color images, it is also worthwhile to investi-
gate how the proposed PCC method works for normal images,
such as those contained in the CC2018 and NUS-8 datasets.
Besides the various existing methods described above, some
additional methods—corrected moment with 19 edges (CM),
regression tree (RT), CCC, and CNN—were also included.
Table 2 summarizes the angular errors derived using the various
methods on these two datasets, together with the number of
parameters for each method listed in the last column. For the
NUS-8 dataset, the proposed PCC model was trained and
evaluated on each of the eight cameras, and the results were
calculated using the mean results of all cameras.

It can be observed that the statistical-based methods generally
resulted in much poorer performance. The various state-of-the-
art learning-based methods, such as the RT, FFCC, and FC4
methods, had much better performance, with the FC4 method
having the smallest angular errors. These learning-based meth-
ods, however, all have a great number of parameters and require
a large memory size, so that they cannot be easily deployed in
practice. In contrast, the performance of the proposed PCC

Table 3. Summary the Performance of the Various
Methods for the Cube+ Dataset, with the
Learning-Based Methods (i.e., Quasi, FFCC, and C5)
Trained Using the NUS-8 Dataset

Method Mean Med. Tri. Best 25% Worst 25%

WP [2] 9.69 7.48 8.56 1.72 20.49
GW [3] 3.52 2.55 2.82 0.60 7.98
SoG [4] 3.22 2.12 2.44 0.43 7.77
Quasi [26] 2.69 1.76 2.00 0.49 6.45
FFCC [17] 2.69 1.89 2.08 0.46 6.31
C5 (m = 1) [15] 2.60 1.86 2.10 0.55 5.89
PCC 2.64 2.08 2.23 0.81 5.41

method was generally comparable to these state-of-the-art
learning-based methods, though it was designed for pure color
images. More importantly, the proposed PCC method requires a
small memory size, with the number of parameters only around
400. Thus, the proposed PCC method can be applied to both
pure color images and normal images, and it can be deployed in
practice with a small memory size.

5. DISCUSSION

A. Rationale of Feature Selection and Network
Design

The design of the proposed PCC method included the feature
selection and the design of the MLP neural network. The four
color features were selected based on the combinations of four
statistical-based methods [i.e., white patch, grey world, bright,
and PCA (bright and dark)]. In other words, the color features
are indeed considered important for illuminant estimation.
Different numbers of features and alternative features were
also tried, and these four features were found to have the best
performance. Regarding the network design, though increas-
ing the number of hidden layers can possibly result in better
performance, it will also require greater computational power
and memory size. We tried different designs of the network and
found the proposed network illustrated in Fig. 4 can achieve

Table 2. Summary of the Performance of Various Methods, in Terms of the Angular Errors, on Two Datasets,
CC2018 and NUS-8, and the Number of Parameters for the Learning-Based Methods

a

CC2018 NUS-8

Methods Mean Med. Tri. Best 25% Worst 25% Mean Med. Tri. Best 25% Worst 25% No. of Parameters

WP 7.55 5.68 6.35 1.45 16.12 10.62 10.58 10.49 1.86 19.45 -
GW 6.36 6.28 6.28 2.33 10.58 8.42 7.05 7.37 2.41 16.08 -
SoG 4.93 4.01 4.23 1.14 10.20 3.40 2.57 2.73 0.77 7.41 -
Bright 3.98 2.61 - - - 3.17 2.41 2.55 0.69 7.02 -
PCA 3.52 2.14 2.47 0.50 8.74 2.92 2.04 2.24 0.62 6.61 -
CM (19 Edge) 3.12 2.38 2.59 0.90 6.46 3.03 2.11 2.25 0.68 7.08 -
RT 2.42 1.65 1.75 0.38 5.87 2.36 1.59 1.74 0.49 5.54 31.5M
CCC 1.95 1.22 1.38 0.35 4.76 2.38 1.48 1.69 0.45 5.85 700
FFCC 1.99 1.31 1.43 0.35 4.75 2.06 1.39 1.53 0.39 4.80 8200
CNN 2.36 1.98 - - - - - - - - 0.15M
FC4 1.77 1.11 1.29 0.34 4.29 2.12 1.53 1.67 0.48 4.78 4.34M
PCC 2.64 1.61 1.83 0.45 6.62 2.32 1.66 1.80 0.51 5.29 400

aThe results of FFCC were from [17], and the others were from [8].

© 2023 Optica Publishing Group. Personal use only.
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the best balance between the performance and complexity. It
is worthwhile to further investigate whether advanced neural
network strategies (e.g., a shortcut connection [25]) can achieve
better results, in terms of performance and complexity, in the
future.

B. Cross-Sensor Performance

DNN-based methods are generally trained using images cap-
tured by a certain camera or a group of cameras. Since the
spectral sensitivity functions of each camera are not identical,
the trained models may be device-dependent and can only be
applied to the same camera(s). This is a serious challenge in
practice, as it requires significant efforts to capture new images
and perform model training when a different camera is used.

The proposed PCC method only uses four color features,
which can be considered as an upgrade version of statistical-
based methods. Thus, these four color features could be
considered as device-independent [15]. Therefore, this method
was hypothesized to have a good cross-sensor performance.
This was validated by training the model using the NUS-8

Table 4. Summary and Comparison of the
Performance of the Proposed PCC Method When the
Training Was Performed Using the NUS-8 Dataset and
the Testing Was Performed Using Each of the Four
Datasets

Datasets Mean Med. Tri. Best 25% Worst 25%

Cube+ 2.64 2.08 2.23 0.81 5.41
CC2018 4.65 3.85 3.91 1.49 9.37
TAU 4.04 3.47 3.62 1.71 7.34
PolyU Pure Color 5.71 4.17 4.62 1.36 12.12

Fig. 7. Chromaticities of the image captured using three different
sensors (i.e., Canon 1D, FujifilmXM1, and Nikon D5200) and the
four color features, in terms of the chromaticities, derived from each
image. This illustrates that the color features have much smaller varia-
tions, in comparison to all the pixels in the images, suggesting the good
cross-sensor performance of the PCC method (note: the images were
selected from the NUS-8 dataset).

dataset and testing the model using the Cube+ dataset, using
the methods (i.e., C5 [15] and Quasi [26]) that were found
to have the good cross-sensor performance and the proposed
PCC method, as summarized in Table 3 [2–4,15,17,26]. It
can be observed that the performance of the PCC method was
comparable to the C5 and Quasi methods, but the number of
parameters is around 1/10 of that of the C5 method. Figure 7
illustrates the small variations of the four color features, in terms
of the chromaticities, of the PCC method of the same scene
captured using three sensors.

Furthermore, such a cross-sensor performance was hypoth-
esized to be more serious in pure color images since the
distributions of the image pixel chromaticities would have
much larger differences among different cameras in compari-
son to the normal images. This was validated by training the
proposed PCC method using the NUS-8 dataset while testing
the performance on other datasets (i.e., Cube+, CC2018, TAU,
and PolyU Pure Color), with the performance summarized in
Table 4. It can be observed that the PolyU Pure Color dataset
resulted in the worst performance, suggesting the uniqueness
and also the great value of this dataset for future computational
color constancy work.

6. CONCLUSION

Illuminant estimation is critically important to imaging systems
and attracts great attention, but little effort has been made on
images that are dominated by a single color (i.e., pure color
images). In this study, a pure color image dataset—“PolyU Pure
Color” dataset—was developed, and a lightweight feature-
based MLP neural network model—PCC—was developed for
illuminant estimation. It estimates the chromaticities of the
illuminant based on four important color features (i.e., four sets
of chromaticities) of an image, including the chromaticities of
the maximal, mean, brightest, and darkest pixels in an image.

The proposed PCC method was found to have good perform-
ance in estimating the illuminant of pure color images, in terms
of the angular error, in comparison to the various statistical-
based and learning-based methods. Moreover, its performance
on normal images in the existing datasets (i.e., CC2018 and
NUS-8) was also comparable to the state-of-the-art learning-
based methods, though it was purposely designed for pure color
images. Further analyses clearly showed that the proposed PCC
method also had a good cross-sensor performance, which is a
great challenge for practical deployments. Last but not least,
the excellent performance of the proposed PCC method was
achieved with a significantly smaller number of parameters
(i.e., around 400 parameters) in comparison to the state-of-
the-art methods (i.e., FFCC and FC4 methods), taking only
0.25 ms to process an image with an unoptimized Python
implementation, which allows it to be deployed in practice.

APPENDIX A

The thumbnails of the images included in the dataset are shown
in Fig. 8. The dataset includes outdoor scenes (e.g., green grass,
blue sky, and flowers) and indoor scenes (e.g., fabrics and walls).
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Fig. 8. Thumbnails of the images that were collected and included in PolyU Pure Color dataset.

Disclosures. The authors declare no conflicts of interest.

Data availability. The dataset and code are available in Ref. [27].
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