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Abstract:9

Deep Neural Networks (DNNs) have been widely used for illuminant estimation, which10

commonly requires great efforts to collect sensor-specific data. In this article, we propose11

a dual-mapping strategy—DMCC method. It only requires the white points captured by the12

training and testing sensors under a D65 condition to reconstruct the image and illuminant data,13

and then maps the reconstructed image into sparse features. These features, together with the14

reconstructed illuminants, were used to train a lightweight multi-layer perceptron (MLP) model,15

which can be directly used to estimate the illuminant for the testing sensor. The proposed model16

was found to have performance comparable to other state-of-the-art methods, based on the three17

available datasets. Moreover, the smaller number of parameters, faster speed, and not requiring18

data collection using the testing sensor make it ready for practical deployment. This article is an19

extension of [1], with more detailed results, analyses, and discussions.20

1. Introduction21

Color constancy is the ability of the human visual system to maintain the color appearance22

of objects relatively constant under different illuminants [2]. Computational color constancy23

algorithms are developed to emulate such an ability for digital cameras, with the estimation of24

illuminant being the key challenge. This is also referred to as auto white balance (AWB), which25

is an important step in the camera image signal processor (ISP) pipeline.26

The various algorithms can be classified into statistical- and learning-based methods. Statistical-27

based methods, such as the gray-world method [3], typically estimate the illuminants based on28

individual images. They are generally simple and do not rely on the spectral sensitivities of the29

cameras, but the performance is also limited. In comparison, learning-based methods, such as30

gamut mapping [4] and color moment-based [5] methods, have better performance. In recent31

years, Deep Neural Network (DNN)-based methods [6–8] were developed. They can lead to32

better performance than the various learning-based methods.33

DNN-based methods generally treat illuminant estimation as a regression task, deriving the34

illuminant based on the input image data:35

L𝑖 = 𝑓 𝜃 (Y𝑖) (1)

where Y𝑖 is the linear RAW-RGB image dataset, L𝑖 is the corresponding illuminants dataset, 𝑖36

and 𝜃 are the image sample index and learning parameters respectively. The function 𝑓 (·) is the37

model, learning the relationship between the images and illuminants in a training dataset.38

DNN-based models always need to be trained for each individual camera sensor, since the39

relationship between the images and illuminants significantly varies with the spectral sensitivity40

functions of sensors, as illustrated in Fig. 1(A). With the data of the training sensor labeled as41

the source domain 𝐷𝑠 =
{
L𝑠,𝑖 ,Y𝑠,𝑖

}
and the data of the testing sensor as the target domain42



(A) Differences in spectral sensitivity among 
sensors result in different image data and 
illuminants

(B) Variations can be largely 
mitigated via a diagonal mapping
in the feature space
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Fig. 1. Illustration of the proposed dual-mapping strategy. (A) An example of a scene
captured by two different camera sensors−Nikon and Canon, exhibits variations in
image data and illuminant distributions. (B) Illustration of the effectiveness of using a
diagonal mapping strategy in a feature space to reduce the variations.

𝐷𝑡 =
{
L𝑡 ,𝑖 ,Y𝑡 ,𝑖

}
, Eq. 1 can be expressed as follows:43

L𝑠,𝑖 = 𝑓 𝜃𝑠 (Y𝑠,𝑖)
L𝑡 ,𝑖 = 𝑓 𝜃𝑡 (Y𝑡 ,𝑖)

(2)

where 𝑓 𝜃𝑠 ≠ 𝑓 𝜃𝑡 due to 𝐷𝑠 ≠ 𝐷𝑡 . Therefore, a model that is trained using one sensor cannot44

be directly applied to another sensor if the spectral sensitivity functions of the two sensors are45

different. Such a problem is not non-trivial, as it requires great efforts to collect both image and46

illuminant data and to train a new model when a new sensor is used, which becomes a serious47

challenge for deploying DNN-based methods for practical applications.48

1.1. Prior Works49

Efforts have been made to address the cross-sensor problem of DNN-based methods, which can50

be classified into two categories based on their practical applications: (i) model re-training-free51

(MRTF) methods and (ii) data re-collection-free (DRCF) methods.52

Model Re-Training-Free (MRTF) methods These methods aim to develop a universal model53

that can be directly applied to other sensors without re-training [9–11], or with just a little54

fine-tuning [11–13]. This is of interest to both academia and industry since it minimizes the55

efforts of data collection and re-training. The underlying concept is that the training is performed56

on a wide range of datasets in various domains, such as RAW-RGB images captured by different57

sensors or even distinct color spaces [11], with multi-task learning [12]. This can be expressed58

as 𝐷𝑡 ⊂ 𝐷𝑠, suggesting that a well-trained model 𝑓 𝜃𝑠 has a great potential to have a good59

performance on a testing set 𝐷𝑡 .60

The universal models, however, are difficult to train due to the difficulty in mastering multi-61

domain datasets, which commonly results in highly complicated models and thus impossible62

to be deployed in practice. More importantly, overfitting commonly happens to these models,63

especially when large variations exist in datasets due to the wide range of sensors and other64

factors (e.g., lenses).65



One of the most recent state-of-the-art methods (i.e., C5 [10]) leverages hypernetworks [14]66

and the principles of convolutional color constancy (CCC) [15], and considers the fast fourier67

color constancy (FFCC) [16] for ensuring the reliable performance on various sensors. By68

incorporating hypernetworks, the C5 method dynamically adjusts the weightings according to the69

variations of the input content, ensuring adaptability to various imaging conditions. The good70

performance of the C5 method is introduced by the diverse and large training datasets, which71

include labeled and unlabeled images captured by multiple sensors. To fine-tune the model for72

a certain testing sensor, only a few images captured by the testing sensor are needed and no73

label information is needed. The optimal number of images for achieving the best performance,74

however, varies from sensor to sensor. This introduces another hyperparameter, making the75

method more complicated and difficult for practical deployment. Moreover, complicated data76

preprocessing steps, such as the log histogram operation in terms of spatial and gradient aspects,77

also make it difficult for practical deployment.78

To increase the size of the training data, Bianco and Cusano [11] innovatively include sRGB79

images from the internet in the training data, with the model being directly deployed (or with80

fine-tuning) on the RAW-RGB testing data. This is based on the assumption that the sRGB81

images can be considered white-balanced, with a ’quasi-unsupervised’ strategy used to train82

a DNN model to detect achromatic pixels based on the grayscale images. Such a method not83

only effectively increases the size of the training data, but also allows the application to images84

captured by any sensor. The heavy network and the unsatisfactory performance, however, are the85

main weaknesses.86

Different from the previous ’learning-aware’ methods, a ’color-aware’ method called SIIE87

was proposed by Afifi et al [9]. It learns an ’XYZ-like’ color space in an end-to-end manner to88

construct the MRTF model. The assumption of the existence of an independent working space89

derived through a simple transformation matrix for all cameras, however, may not be valid. This90

can be observed from the diminished results derived based on the data from a sensor that was91

significantly different from the training sensor. Similar to the methods discussed above, this92

method also leads to overfitting.93

In addition to the methods that are completely re-training-free, methods that adopt few-shot94

fine-tuning strategies are also available. We classify these methods into the MRTF category95

as well, since they also aim to create a universal model. The only difference is that minor96

adjustments are made for a specific testing sensor based on a small number of images, which97

does not require too much effort for data re-collection. McDonagh et al. [13] was the first to98

apply a meta-learning few-shot strategy (i.e., MAML [17]) on the cross-sensor color constancy99

problems. The method establishes initial model parameters during the meta-learning phase100

for optimizing the performance on unseen tasks. It makes it vital to define tasks that cover a101

wide range of scenarios. Specifically, the tasks are defined based on an assumption that images102

with similar white point color temperatures would have similar dominant colors. Tuning the103

hyperparameters of the MAML model, however, is challenging and time-consuming due to its104

complexity. Inspired by this idea and the FC4 [6] framework, Xiao et al. [12] propose a multi-task105

learning method (i.e., MDLCC), which includes two modules—the common feature module and106

the sensor-specific reweight module. Though the shared feature extractor model can effectively107

learn from the images captured by different sensors and thus increase the size of the training data,108

the method requires a high memory and becomes difficult for practical deployment.109

To sum up, though MRTF methods generally provide promising solutions to cross-sensor110

color constancy, they still have weaknesses (e.g., overfitting and complexity) for deployment.111

Therefore, researchers are looking for possibilities to focus on individual testing sensors instead112

of all sensors together, and the methods are considered data recollection-free (DRCF).113



Data Re-Collection-Free (DRCF) methods These methods can be considered as special types114

of MRTF methods. Instead of aiming to train a universal model that works for all sensors, these115

methods aim to train a model for a specific sensor, which can significantly reduce the effort of116

data re-collection.117

Such an approach directly trains a model 𝑓 𝜃𝑡 for the testing data, primarily using the source118

data 𝐷𝑠, which achieves better model performance on the testing data, lower likelihood of119

overfitting, and a relatively lightweight model design. This, however, is achieved at the expense of120

an obvious drawback that a distinct model needs to be trained for each individual testing sensor.121

Currently, there are only a few DRCF methods. One method was developed based on the122

Bayesian [18] framework and was designed to have the ability to handle multi-task images. It123

uses the illuminants captured by the testing sensors as the ground truth, trains the RAW images124

captured by different sensors as the input data, and employs a Bayesian-based CNN framework,125

which leads to good performance. The necessity to collect the testing illuminants, however,126

becomes a challenge. On one hand, these illuminants are needed for constructing the training127

labels. On the other hand, a comprehensive estimation of the illuminants is critical for tuning the128

hyperparameters of the clustering algorithms, which adds complexity to the process.129

In this article, we propose an illumination estimation method—Dual Mapping Color Constancy130

(DMCC)—for cross-sensor applications, which addresses the challenges of the existing methods.131

It does not require great efforts in data re-collection, but can also result in performance that132

is comparable to the state-of-the-art methods. This is achieved using a dual mapping strategy,133

including a diagonal mapping and a feature mapping (extraction), as illustrated in Fig. 1(B).134

Moreover, this proposed method is easy to train, quick to implement, and memory-efficient,135

making it a practical solution to be deployed on ISP chips.136

2. Proposed Method137

2.1. Problem Formulation138

The proposed DMCC method has two main phases, as illustrated in Fig. 2. In the calibration139

phase, a diagonal matrix 𝑀 is derived based on the two white points, with one captured by the140

training and testing camera sensors respectively, under a D65 condition. In the training phase,141

images and illuminants from the training sensor are reconstructed using the matrix 𝑀, which142

allows to directly train 𝑓 𝜃𝑡 using the data pairs in the training domain {Y𝑠 ,L𝑠}, without requiring143

data recollection using the testing sensor. Following this, a feature extractor is used to map the144

reconstructed full image data 𝑀 × Y𝑠 into sparse features. This process, as illustrated in Fig. 1145

(B), was found to make the mapped features from the training and testing data well aligned:146

𝑔(𝑀 × Y𝑠) ∼ 𝑔(Y𝑡 ) (3)

where 𝑔(·) is the feature extractor. It was also found that the distribution of the reconstructed147

illuminants, derived using the calibration matrix 𝑀 and the illuminants captured by the training148

sensor L𝑠 , was well aligned with that of the testing sensor, as shown in Fig. 1 (B):149

𝑀 × L𝑠 ∼ L𝑡 (4)

Then, a multi-layer perceptron (MLP) model 𝑓 𝜃𝑡 can be trained using {𝑔(𝑀 × Y𝑠), 𝑀 × L𝑠},150

which can be expressed as follows (note: the multiplication sign × is omitted for simplicity):151

𝜃∗𝑡 = arg min
𝜃𝑡

𝑛∑︁
𝑖=1

𝐿 (𝑀L𝑠,𝑖 , 𝑓
𝜃𝑡 (𝑔(𝑀Y𝑠,𝑖))) (5)

where 𝑖 is the image index, 𝑛 is the total number of training images, and 𝐿 (·) is the loss function.152

Although it is impossible to have a perfect alignment between each individual pair of training153

and testing data, our proposed method is able to effectively reduce the discrepancy. The efficacy154

of employing {𝑔(Y,L)} to train 𝑓 𝜃 has been revealed in our recent work [7].155



Feature extractor 𝑔(·) In this context, 𝑔(·) represents an abstract function encapsulating156

the process of extracting a set of features (i.e., the maximum, mean, brightest, and darkest157

pixels) in terms of the chromaticities {𝑟, 𝑔} = {𝑅, 𝐺}/(𝑅 + 𝐺 + 𝐵) from the image data Y. The158

effectiveness of using {𝑟, 𝑔} chromaticities has been validated in past studies (e.g., [5, 7, 19]),159

due to its effectiveness in mitigating illumination variations and reducing dimensionality.160

The specific expressions for these features are as follows: {𝑅max, 𝐺max} ⇒ {𝑟max, 𝑔max},161

{𝑅mean, 𝐺mean} ⇒ {𝑟mean, 𝑔mean}, {𝑅𝑝

𝑏
, 𝐺

𝑝

𝑏
} ⇒ {𝑟𝑏, 𝑔𝑏} (where 𝑝 = argmax(𝑅𝑖 +𝐺𝑖 + 𝐵𝑖), and162

{𝑅𝑝

𝑑
, 𝐺

𝑝

𝑑
} ⇒ {𝑟𝑑 , 𝑔𝑑} (where 𝑝 = argmin(𝑅𝑖 + 𝐺𝑖 + 𝐵𝑖). Through such a feature extraction163

operation, the image data is mapped into four sparse features, which are then used as the inputs164

for the MLP.165

In summary, the proposed DMCC method combines the mapping of data using a calibration166

matrix 𝑀 and the mapping of image data using a feature extractor 𝑔(·), which effectively reduces167

the domain discrepancy caused by the sensors.
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Fig. 2. Overview of the proposed DMCC method. The calibration phase derives the
diagonal matrix 𝑀 using the two white points captured by the training (i.e., Canon)
and testing (i.e., Sony) sensors under a D65 condition. The diagonal matrix 𝑀 is used
to reconstruct the image data in the training data (i.e., 𝑀 × YCanon) and the training
illuminants (i.e., 𝑀 × ICanon). Features are then extracted from the reconstructed image
data, which is used to train an MLP model with the reconstructed illuminants.

168

2.2. Architecture of DMCC169

The DMCC method includes a diagonal mapping and a feature mapping followed by an MLP170

training. In particular, the feature mapping is similar to the PCC method proposed in our recent171

study [7], with modifications made on the hyperparameters, particularly the number of neurons172

per layer was increased from 8 to 11 and the total number of parameters became around 800.173

The output of the model is the estimated illuminant chromaticities (𝑟, 𝑔̂) in the 2-D chromaticity174

color space, with 𝑏̂ calculated as 1 − 𝑟 − 𝑔̂. Such an MLP-based network has a fast inference175

time. With an unoptimized Python implementation, it only takes ∼0.3 and ∼1.0 ms to process an176

image on an RTX3070Ti GPU and Intel-i9 CPU respectively, which is ∼25 times faster than the177

fastest existing cross-sensor color constancy method (i.e., the C5 method) and has ∼700 times178

fewer parameters. Also, training the DMCC model from scratch only takes less than an hour179

with the hardware specifications described above. These make the method suitable for practical180

deployments.181



3. Experiment182

3.1. Implementation Details183

Loss function The proposed DMCC method adopts the traditional angular error between the184

estimated illuminant ℓ̂ℓℓ and the ground truth illuminant ℓℓℓ with a regularization as the loss function:185

𝐿𝐿𝐿 (𝜃) = 𝑐𝑜𝑠−1 ©­­«
ℓℓℓ ⊙ ℓ̂ℓℓ

∥ℓℓℓ∥ ×



ℓ̂ℓℓ


ª®®¬ + 𝜆 | |𝜃 | |1 (6)

where ⊙ represents the inner products and 𝑐𝑜𝑠−1 (·) is the inverse of a cosine function. L1186

regularization is employed to adjust the training parameters 𝜃 to avoid overfitting, and 𝜆 is the187

regularization weight parameter whose number is 10−5.188

Settings The DMCC framework, constructed with PyTorch and integrated with CUDA support,189

uses the Adam optimizer [20] for training, in conjunction with He initialization [21]. We190

utilize a batch size of 32 over 10, 000 epochs with a learning rate of 7 × 10−3. In addition,191

a cosine annealing strategy [22], is applied to adjust the learning rate, and an early stopping192

strategy is employed to save the best-performing model throughout the training process. All193

the hyperparameters used are kept the same in the experiment. A grid search strategy was used194

to identify the optimal parameters using the data captured by one camera (i.e., a Sony camera)195

coupled with a Canon white point under D65 conditions, both of which are included in the196

INTEL-TAU dataset [23], as described in Section 4. The optimization process utilized a standard197

three-fold cross-validation method, which was considered simple and effective, and also used in198

past work (e.g., [24] and [7]). It is worthwhile to investigate whether advanced methods, such as199

nested cross-validation, can further improve the results.200

White points The diagonal matrix 𝑀 is derived from the white points captured by the training201

and testing sensors under a D65 condition. The publicly available datasets, however, only include202

the white point of the RAW images in the camera color space, which does not allow to derive the203

correlated color temperature (CCT) of the illuminant and the diagonal matrix 𝑀 . Thus, we used204

the two pre-calibrated matrices, 𝐶1 and 𝐶2, and a trial-and-error strategy, as described in the205

supplementary material, to estimate the CCT of each image.206

3.2. Data Augmentation and Preprocessing207

In order to further improve the accuracy of reconstructing the training set using the diagonal208

matrix 𝑀, AWB-Aug [7] was employed to perform the data augmentation, which involved an209

illuminant enhancement strategy. Specifically, a uniform sampling around the illuminant was210

performed in the chromaticity space, with the illuminant positioned at the center of the circle.211

The radius of the circle, a hyperparameter, was set to 0.05, which was found to produce stable212

results, as shown in Fig. 3. The data augmentation method used here seems to be effective for213

training the DMCC model, but other methods can also be tried in future studies.214

In the experiment, linear RAW-RGB images, with the calibration labels and black level215

subtracted, were used. Also, saturated and dark pixels were clipped. Moreover, since the method216

is based on sparse features and is resolution-independent, the images were resized to 64 × 64 × 3217

and normalized for fast processing.218

3.3. Datasets219

In our experiments, all the cameras in the three different datasets (i.e., INTEL-TAU [23] (three220

cameras), NUS-8 [25] (eight cameras), and Cube+ datasets [26] (one camera)) were used.221



Fig. 3. Illustration of the effectiveness of the data augmentation to cover the variations
of the illuminants in the testing dataset. Left: the original distribution of the illuminants
in the training and testing sets; Middle: the changes introduced by the diagonal matrix
mapping; Right: the improved similarity of the distributions of the illuminants between
the training and testing sets after the data augmentation.

A modified three-fold validation approach, with two folds for training and the other fold for222

validation, was used. In particular, the training and validation processes were conducted solely223

on the training sensor (and a white point from the testing sensor). This was performed to lead to224

the best performance on the testing sensor, instead of pursuing an optimal performance for all the225

sensors. Five statistical results, including the mean, median (Med.), trimean (Tri.), the mean226

of the smallest 25% (Best 25%), and the mean of the largest 25% (Worst 25%) of the angular227

error between the estimated and the ground-truth illuminants, in terms of degrees, were used to228

characterize the performance.229

4. Results and Discussions230

4.1. Comparative Results231

INTEL-TAU dataset (Table 1) The INTEL-TAU evaluation strategy was used to allow a fair232

comparison. In other words, for testing the data of the Sony sensor, the training and validation233

were performed using the data of the Canon sensor. Similarly, the data of the Nikon sensor234

was used for training and validation, when that of the Canon sensor was used for testing; that235

of the Sony sensor was used for training and validation when that of the Nikon sensor was236

used for testing. It can be observed that the proposed DMCC method outperformed all the237

statistical-based algorithms and most DNN-based methods. In particular, its performance was238

generally comparable to the state-of-the-art C5 method and was roughly on par when the C5239

method uses a single image data without a label (m=1). The DMCC method, however, uses an240

image label without the image data, and it only requires 1/700 execution time and 1/25 memory241

usage in comparison to the C5 method.242

Cube+ and NUS-8 datasets (Table 2) When evaluating the Cube+ and NUS-8 datasets, the243

model was trained solely on the INTEL-TAU Sony IMX135 dataset and tested on the Cube+ and244

NUS-8 datasets. In particular, the training sensor (i.e., Sony IMX135) was carefully selected245

to have the illuminants far away from the testing sensors’ illuminants. Table 2 shows that our246

DMCC method outperformed the C5(m=1) methods. Moreover, the training set only included247

the INTEL-TAU Sony IMX135 dataset, without similar image data or illuminant-related training248

(please refer to the supplementary material for details), which highlights the superior robustness249

and generalizability of the DMCC method. Figure 4 shows some examples of the images250

processed by the various methods. In this article, we used a single training dataset and different251

testing datasets, with the performance suggesting the strong adaptability of the proposed DMCC252

method. Further studies using different training datasets with a same testing dataset will be also253



Table 1. Summary of the performance of various methods, in terms of angular errors,
on the INTEL-TAU datasets, together with the processing time and parameter size. The
results of the Gray-World, White Patch, Shades-of-Gray, and Cheng-PCA were extracted
from [23], and those of the Quasi-Unsupervised, SIIE, FFCC, C5, and MDLCC were
extracted from [10] and [12]. The proposed method is highlighted in yellow.

INTEL-TAU Dataset Best25% Mean Med. Tri. Worst25% Time(ms)/Size(MB)

Gray-world [3] 0.9 4.7 3.7 4.0 10.0 - /-

White-Patch [2] 1.1 7.0 5.4 6.2 14.6 - / -

Shades-of-Gray [27] 0.7 4.0 2.9 3.2 9.0 - /-

Cheng-PCA [25] 0.7 4.6 3.4 3.7 10.3 - /-

Quasi-Unsupervised CC [11] 0.7 3.7 2.7 2.9 8.6 90 / 622

SIIE [9] 0.7 3.4 2.4 2.6 7.8 35 / 10.3

MDLCC [12] - - - - - 25 / 6

C5(m=7) [10] 0.5 2.6 1.7 - 6.2 7 / 2.09

C5(m=1) [10] 0.7 3.0 2.2 - 6.7 7 / 2.09

DMCC (Ours) 0.7 3.0 2.3 2.2 6.8 0.3 / 0.003

interesting. For the NUS-8 dataset, the training and testing were performed on each of the eight254

sensors, with the average results summarized in Table 2 and more detailed results included in the255

supplementary materials.256

Nikon D810 Error = 3.90° Error = 4.70° Error = 2.16°

Ground-truthDMCC(ours)

Canon EOS 550D Error = 6.09° Error = 3.03° Error = 0.74°Mobile Sony IMX135

Input raw image

Error = 2.99°

Quasi-Unsupervised CC

Error = 0.80°

C5

Canon EOS 5DSR Error = 10.92° Error = 2.23° Error = 0.75°

Error = 0.80°

SIIE

Error = 2.11°

Error = 3.14°

Error = 0.69°

Nikon D810

Fig. 4. Examples of the images processed using the proposed DMCC method and other
methods extracted from [10].

4.2. Impacts of Diagonal Mapping and Feature Extraction257

The diagonal mapping and feature extraction are the two key elements in the proposed DMCC258

method. In order to evaluate which one plays a more important role, we carried out a comparative259

analysis, with the results summarized in Table 3. The analysis shows that methods like CNN [28]260

and FC4 [6], as well as DMCC without a diagonal mapping (DMCC (w/o)), all had poor261

performance. This suggests that feature extraction individual cannot result in good performance.262

However, when a diagonal mapping is employed, significant improvements can be observed.263

Specifically, the mean and median errors of the CNN were reduced by 40% and 42% respectively;264

more significant improvements can be found for the FC4, with a 56% decrease in the mean265

error and a 64% decrease in the median error. These clearly suggest that the proposed diagonal266

mapping plays a critical role in solving the cross-sensor color constancy issues.267



Table 2. Summary of the performance of various methods, in terms of angular errors,
on the Cube+ [26] and NUS-8 [25] datasets. For the NUS-8 dataset, the mean values
of the eight sensors are reported here, with the detailed information shown in the
supplementary material. The proposed method is highlighted in yellow.

Cube+ Dataset Best25% Mean Med. Tri. Worst25%

Gray-world [3] 0.60 3.52 2.55 2.82 7.98

Shades-of-Gray [27] 0.43 3.22 2.12 2.44 7.77

Quasi-Unsupervised CC [11] 0.49 2.69 1.76 2.00 6.45

SIIE [9] 0.44 2.14 1.44 - 5.06

C5(m=7) [10] 0.41 1.87 1.27 - 4.36

C5(m=1) [10] 0.55 2.60 1.86 - 5.89

DMCC (Ours) 0.49 2.23 1.63 1.78 4.95

NUS-8 Dataset Best25% Mean Med. Tri. Worst25%

Gray-world [3] 1.16 4.59 3.46 3.81 9.85

Shades-of-Gray [27] 0.98 3.67 2.94 3.03 7.75

Cheng-PCA [25] 0.78 2.93 2.33 2.42 6.13

Quasi-Unsupervised CC [11] - 3.00 2.25 - -

SIIE [9] 0.52 2.05 1.50 - 4.48

C5(m=7) [10] 0.66 2.68 2.00 - 5.90

C5(m=1) [10] 0.69 2.84 2.20 - 6.14

DMCC (Ours) 0.74 2.80 2.12 2.25 5.88

Table 3. Comparisons of various methods with and without the diagonal mapping and
the feature extraction, in terms of the angular error. The model was trained on Canon
5DSR, but tested on Sony IMX135. Sensor-invariant performance was evaluated on
Sony IMX135.

Cross-sensor Sensor-invariant
Method

Feature Diagonal Dual -

Mean Median Mean Median Mean Median Mean Median

CNN [28](w/o) 6.31 5.25 6.31 5.25 6.31 5.25 3.28 2.28

CNN [28](w) – – 3.77 3.07 – – – –

FC4 [6](w/o) 5.57 4.99 5.57 4.99 5.57 4.99 1.73 1.14

FC4 [6](w) – – 2.46 1.80 – – – –

DMCC(w/o)a 10.05 9.10 – – – – 2.55 1.79

DMCC – – – – 3.20 2.27 – –
a Roughly equivalent to PCC [7].



Based on this, the combination of the diagonal mapping and the feature extraction in the268

DMCC method further improves the performance. It can be found that the combination was able269

to introduce nearly 50% performance improvement over the CNN method without a diagonal270

mapping, and close to 10% improvement over the CNN with a diagonal mapping, suggesting271

the benefits brought by the feature extraction. Therefore, it can be concluded that the good272

performance of the DMCC method was mainly due to the inclusion of diagonal mapping. Though273

adding the diagonal mapping to the FC4 method can lead to even better performance, it requires274

significantly more computational resources and memory, as discussed in our previous study [7].275

Moreover, the above methods were also evaluated on sensor-invariant conditions, with the276

results considered as the upper limit for the cross-sensor cases. It is observed that the DMCC277

method for the cross-sensor cases can reach around 80% of the upper limit (i.e., 3.20 compared278

to 2.55).279

4.3. A Diagonal Matrix or A Full Matrix?280

As stated above, the diagonal mapping matrix is derived based on the white points captured by281

the training and testing sensors under a D65 condition. It’s notable that a related work by [29]282

also employed a diagonal mapping strategy under D55 conditions to compare different sensors283

and datasets. Although their objective was to identify the biases in color constancy benchmark284

datasets, it reveals the possibility of using a diagonal mapping when solving color constancy285

tasks.286

It is reasonable to wonder whether a full matrix derived under the conditions with several287

CCTs (e.g., 2800 and 4000 K), instead of a diagonal matrix, can lead to a better performance.288

We, therefore, conducted an analysis using the white points captured under three conditions with289

different CCTs (i.e., 2800, 4000, and 6500 K), with a diagonal matrix derived under each CCT.290

In addition, a full 3 × 3 matrix was derived based on the white points captured under three CCTs291

using a least-square method. As shown in Fig. 5, the diagonal matrix derived under the 6500 K292

resulted in the best performance, which could be due to the fact that most scenes were under293

daylight. In contrast, the full matrix did not have a good performance, which should be due to the294

failure of using a linear transformation to perform a color transformation across different CCTs.295

4.4. Further Application, Limitation, and Future Work296

The concept of diagonal-matrix mapping, together with the DMCC method, can also be applied297

for quick evaluations and characterizations of sensor discrepancies. For example, the images298

captured by Sensor A are considered as the reference, and one of Sensor B and Sensor C needs to299

be selected so that the captured images can be very similar to the reference. Such a task can be300

easily performed by adopting the diagonal-matrix mapping, using the white points captured by301

the three sensors under a D65 condition to transform the images and to calculate the angular302

errors for selecting either Sensor B or Sensor C.303

Last, but not the least, the proposed DMCC method was found to have a poor performance,304

with an average angular error of 5.5 degrees, on the PolyU Pure Color image dataset [7], a305

dataset containing 102 images dominated by a single color captured by a HUAWEI P50 Pro306

smartphone sensor, with the model trained using a Canon 5DSR sensor. This is likely due to the307

lack of similar pure color images in the training set, and the PolyU Pure Color image dataset308

only contains the images captured by a single camera. Future work is needed to investigate the309

performance of cross-sensor methods on corner cases, including pure color images, with more310

datasets from different sensors to be collected.311

5. Conclusion312

A DMCC method is proposed in this article for dealing with the cross-sensor illuminant estimation313

challenge, with a dual-mapping strategy as the key concept. Specifically, the first mapping314
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Fig. 5. Illustration of the differences, in terms of the angular error, caused by the
different mapping matrices derived using the white points (i.e., a diagonal matrix
derived under each of the four CCTs, and a full matrix derived under the four CCTs
together).

employs a diagonal matrix, which is derived from the white points captured by the training and315

testing sensors under a D65 condition, to reconstruct the image data and illuminants. The second316

mapping then transforms the reconstructed image data into sparse features. These features,317

together with the reconstructed illuminants, are used to train a lightweight MLP model. The318

proposed DMCC method was evaluated on three datasets, with the performance being comparable319

to most of the state-of-the-art methods. Such a good performance comes with a small memory320

size of ∼0.003 MB (1/700 of the state-of-the-art method), allowing for a fast implementation of321

∼0.3 ms on a GPU (∼25 times faster than the state-of-the-art method), and the direct application322

of the trained model to the testing sensors. This makes the method ready for practical deployment.323
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